| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1otrgitv | Structured version Visualization version Unicode version | ||
| Description: Convenient lemma for f1otrg 25751. (Contributed by Thierry Arnoux, 19-Mar-2019.) |
| Ref | Expression |
|---|---|
| f1otrkg.p |
|
| f1otrkg.d |
|
| f1otrkg.i |
|
| f1otrkg.b |
|
| f1otrkg.e |
|
| f1otrkg.j |
|
| f1otrkg.f |
|
| f1otrkg.1 |
|
| f1otrkg.2 |
|
| f1otrgitv.x |
|
| f1otrgitv.y |
|
| f1otrgitv.z |
|
| Ref | Expression |
|---|---|
| f1otrgitv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1otrkg.2 |
. . 3
| |
| 2 | 1 | ralrimivvva 2972 |
. 2
|
| 3 | f1otrgitv.x |
. . 3
| |
| 4 | f1otrgitv.y |
. . 3
| |
| 5 | f1otrgitv.z |
. . 3
| |
| 6 | oveq1 6657 |
. . . . . 6
| |
| 7 | 6 | eleq2d 2687 |
. . . . 5
|
| 8 | fveq2 6191 |
. . . . . . 7
| |
| 9 | 8 | oveq1d 6665 |
. . . . . 6
|
| 10 | 9 | eleq2d 2687 |
. . . . 5
|
| 11 | 7, 10 | bibi12d 335 |
. . . 4
|
| 12 | oveq2 6658 |
. . . . . 6
| |
| 13 | 12 | eleq2d 2687 |
. . . . 5
|
| 14 | fveq2 6191 |
. . . . . . 7
| |
| 15 | 14 | oveq2d 6666 |
. . . . . 6
|
| 16 | 15 | eleq2d 2687 |
. . . . 5
|
| 17 | 13, 16 | bibi12d 335 |
. . . 4
|
| 18 | eleq1 2689 |
. . . . 5
| |
| 19 | fveq2 6191 |
. . . . . 6
| |
| 20 | 19 | eleq1d 2686 |
. . . . 5
|
| 21 | 18, 20 | bibi12d 335 |
. . . 4
|
| 22 | 11, 17, 21 | rspc3v 3325 |
. . 3
|
| 23 | 3, 4, 5, 22 | syl3anc 1326 |
. 2
|
| 24 | 2, 23 | mpd 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 |
| This theorem is referenced by: f1otrg 25751 f1otrge 25752 |
| Copyright terms: Public domain | W3C validator |