Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnbrafvb Structured version   Visualization version   Unicode version

Theorem fnbrafvb 41234
Description: Equivalence of function value and binary relation, analogous to fnbrfvb 6236. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
fnbrafvb  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F''' B )  =  C  <->  B F C ) )

Proof of Theorem fnbrafvb
StepHypRef Expression
1 fndm 5990 . . . . . 6  |-  ( F  Fn  A  ->  dom  F  =  A )
2 eleq2 2690 . . . . . . . 8  |-  ( A  =  dom  F  -> 
( B  e.  A  <->  B  e.  dom  F ) )
32eqcoms 2630 . . . . . . 7  |-  ( dom 
F  =  A  -> 
( B  e.  A  <->  B  e.  dom  F ) )
43biimpd 219 . . . . . 6  |-  ( dom 
F  =  A  -> 
( B  e.  A  ->  B  e.  dom  F
) )
51, 4syl 17 . . . . 5  |-  ( F  Fn  A  ->  ( B  e.  A  ->  B  e.  dom  F ) )
65imp 445 . . . 4  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  B  e.  dom  F
)
7 snssi 4339 . . . . . . 7  |-  ( B  e.  A  ->  { B }  C_  A )
87adantl 482 . . . . . 6  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  { B }  C_  A )
9 fnssresb 6003 . . . . . . 7  |-  ( F  Fn  A  ->  (
( F  |`  { B } )  Fn  { B }  <->  { B }  C_  A ) )
109adantr 481 . . . . . 6  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F  |`  { B } )  Fn 
{ B }  <->  { B }  C_  A ) )
118, 10mpbird 247 . . . . 5  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( F  |`  { B } )  Fn  { B } )
12 fnfun 5988 . . . . 5  |-  ( ( F  |`  { B } )  Fn  { B }  ->  Fun  ( F  |`  { B }
) )
1311, 12syl 17 . . . 4  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  Fun  ( F  |`  { B } ) )
14 df-dfat 41196 . . . . 5  |-  ( F defAt 
B  <->  ( B  e. 
dom  F  /\  Fun  ( F  |`  { B }
) ) )
15 afvfundmfveq 41218 . . . . 5  |-  ( F defAt 
B  ->  ( F''' B )  =  ( F `
 B ) )
1614, 15sylbir 225 . . . 4  |-  ( ( B  e.  dom  F  /\  Fun  ( F  |`  { B } ) )  ->  ( F''' B )  =  ( F `  B ) )
176, 13, 16syl2anc 693 . . 3  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( F''' B )  =  ( F `  B ) )
1817eqeq1d 2624 . 2  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F''' B )  =  C  <->  ( F `  B )  =  C ) )
19 fnbrfvb 6236 . 2  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  =  C  <-> 
B F C ) )
2018, 19bitrd 268 1  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F''' B )  =  C  <->  B F C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   {csn 4177   class class class wbr 4653   dom cdm 5114    |` cres 5116   Fun wfun 5882    Fn wfn 5883   ` cfv 5888   defAt wdfat 41193  '''cafv 41194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-dfat 41196  df-afv 41197
This theorem is referenced by:  fnopafvb  41235  funbrafvb  41236  dfafn5a  41240
  Copyright terms: Public domain W3C validator