MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fncnvimaeqv Structured version   Visualization version   Unicode version

Theorem fncnvimaeqv 16760
Description: The inverse images of the universal class  _V under functions on the universal class  _V are the universal class  _V itself. (Proposed by Mario Carneiro, 7-Mar-2020.) (Contributed by AV, 7-Mar-2020.)
Assertion
Ref Expression
fncnvimaeqv  |-  ( F  Fn  _V  ->  ( `' F " _V )  =  _V )

Proof of Theorem fncnvimaeqv
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fncnvima2 6339 . 2  |-  ( F  Fn  _V  ->  ( `' F " _V )  =  { y  e.  _V  |  ( F `  y )  e.  _V } )
2 fvexd 6203 . . . . 5  |-  ( F  Fn  _V  ->  ( F `  x )  e.  _V )
32biantrud 528 . . . 4  |-  ( F  Fn  _V  ->  (
x  e.  _V  <->  ( x  e.  _V  /\  ( F `
 x )  e. 
_V ) ) )
4 fveq2 6191 . . . . . 6  |-  ( y  =  x  ->  ( F `  y )  =  ( F `  x ) )
54eleq1d 2686 . . . . 5  |-  ( y  =  x  ->  (
( F `  y
)  e.  _V  <->  ( F `  x )  e.  _V ) )
65elrab 3363 . . . 4  |-  ( x  e.  { y  e. 
_V  |  ( F `
 y )  e. 
_V }  <->  ( x  e.  _V  /\  ( F `
 x )  e. 
_V ) )
73, 6syl6rbbr 279 . . 3  |-  ( F  Fn  _V  ->  (
x  e.  { y  e.  _V  |  ( F `  y )  e.  _V }  <->  x  e.  _V ) )
87eqrdv 2620 . 2  |-  ( F  Fn  _V  ->  { y  e.  _V  |  ( F `  y )  e.  _V }  =  _V )
91, 8eqtrd 2656 1  |-  ( F  Fn  _V  ->  ( `' F " _V )  =  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200   `'ccnv 5113   "cima 5117    Fn wfn 5883   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  bascnvimaeqv  16761
  Copyright terms: Public domain W3C validator