MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fndmdifcom Structured version   Visualization version   Unicode version

Theorem fndmdifcom 6322
Description: The difference set between two functions is commutative. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
fndmdifcom  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  \  G )  =  dom  ( G  \  F ) )

Proof of Theorem fndmdifcom
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 necom 2847 . . . 4  |-  ( ( F `  x )  =/=  ( G `  x )  <->  ( G `  x )  =/=  ( F `  x )
)
21a1i 11 . . 3  |-  ( x  e.  A  ->  (
( F `  x
)  =/=  ( G `
 x )  <->  ( G `  x )  =/=  ( F `  x )
) )
32rabbiia 3185 . 2  |-  { x  e.  A  |  ( F `  x )  =/=  ( G `  x
) }  =  {
x  e.  A  | 
( G `  x
)  =/=  ( F `
 x ) }
4 fndmdif 6321 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  \  G )  =  {
x  e.  A  | 
( F `  x
)  =/=  ( G `
 x ) } )
5 fndmdif 6321 . . 3  |-  ( ( G  Fn  A  /\  F  Fn  A )  ->  dom  ( G  \  F )  =  {
x  e.  A  | 
( G `  x
)  =/=  ( F `
 x ) } )
65ancoms 469 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( G  \  F )  =  {
x  e.  A  | 
( G `  x
)  =/=  ( F `
 x ) } )
73, 4, 63eqtr4a 2682 1  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  \  G )  =  dom  ( G  \  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916    \ cdif 3571   dom cdm 5114    Fn wfn 5883   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator