MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frnssb Structured version   Visualization version   Unicode version

Theorem frnssb 6391
Description: A function is a function into a subset of its codomain if all of its values are elements of this subset. (Contributed by AV, 7-Feb-2021.)
Assertion
Ref Expression
frnssb  |-  ( ( V  C_  W  /\  A. k  e.  A  ( F `  k )  e.  V )  -> 
( F : A --> W 
<->  F : A --> V ) )
Distinct variable groups:    A, k    k, F    k, V
Allowed substitution hint:    W( k)

Proof of Theorem frnssb
StepHypRef Expression
1 simpr 477 . . . 4  |-  ( ( V  C_  W  /\  A. k  e.  A  ( F `  k )  e.  V )  ->  A. k  e.  A  ( F `  k )  e.  V )
2 ffn 6045 . . . 4  |-  ( F : A --> W  ->  F  Fn  A )
31, 2anim12ci 591 . . 3  |-  ( ( ( V  C_  W  /\  A. k  e.  A  ( F `  k )  e.  V )  /\  F : A --> W )  ->  ( F  Fn  A  /\  A. k  e.  A  ( F `  k )  e.  V
) )
4 ffnfv 6388 . . 3  |-  ( F : A --> V  <->  ( F  Fn  A  /\  A. k  e.  A  ( F `  k )  e.  V
) )
53, 4sylibr 224 . 2  |-  ( ( ( V  C_  W  /\  A. k  e.  A  ( F `  k )  e.  V )  /\  F : A --> W )  ->  F : A --> V )
6 simpl 473 . . . . 5  |-  ( ( V  C_  W  /\  A. k  e.  A  ( F `  k )  e.  V )  ->  V  C_  W )
76anim1i 592 . . . 4  |-  ( ( ( V  C_  W  /\  A. k  e.  A  ( F `  k )  e.  V )  /\  F : A --> V )  ->  ( V  C_  W  /\  F : A --> V ) )
87ancomd 467 . . 3  |-  ( ( ( V  C_  W  /\  A. k  e.  A  ( F `  k )  e.  V )  /\  F : A --> V )  ->  ( F : A
--> V  /\  V  C_  W ) )
9 fss 6056 . . 3  |-  ( ( F : A --> V  /\  V  C_  W )  ->  F : A --> W )
108, 9syl 17 . 2  |-  ( ( ( V  C_  W  /\  A. k  e.  A  ( F `  k )  e.  V )  /\  F : A --> V )  ->  F : A --> W )
115, 10impbida 877 1  |-  ( ( V  C_  W  /\  A. k  e.  A  ( F `  k )  e.  V )  -> 
( F : A --> W 
<->  F : A --> V ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990   A.wral 2912    C_ wss 3574    Fn wfn 5883   -->wf 5884   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896
This theorem is referenced by:  wlkdlem1  26579
  Copyright terms: Public domain W3C validator