Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frrlem5b Structured version   Visualization version   Unicode version

Theorem frrlem5b 31785
Description: Lemma for founded recursion. The union of a subclass of  B is a relationship. (Contributed by Paul Chapman, 29-Apr-2012.)
Hypotheses
Ref Expression
frrlem5.1  |-  R  Fr  A
frrlem5.2  |-  R Se  A
frrlem5.3  |-  B  =  { f  |  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x  /\  A. y  e.  x  ( f `  y
)  =  ( y G ( f  |`  Pred ( R ,  A ,  y ) ) ) ) ) }
Assertion
Ref Expression
frrlem5b  |-  ( C 
C_  B  ->  Rel  U. C )
Distinct variable groups:    A, f, x, y    f, G, x, y    R, f, x, y   
x, B
Allowed substitution hints:    B( y, f)    C( x, y, f)

Proof of Theorem frrlem5b
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ssel 3597 . . . 4  |-  ( C 
C_  B  ->  (
z  e.  C  -> 
z  e.  B ) )
2 frrlem5.3 . . . . . 6  |-  B  =  { f  |  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x  /\  A. y  e.  x  ( f `  y
)  =  ( y G ( f  |`  Pred ( R ,  A ,  y ) ) ) ) ) }
32frrlem2 31781 . . . . 5  |-  ( z  e.  B  ->  Fun  z )
4 funrel 5905 . . . . 5  |-  ( Fun  z  ->  Rel  z )
53, 4syl 17 . . . 4  |-  ( z  e.  B  ->  Rel  z )
61, 5syl6 35 . . 3  |-  ( C 
C_  B  ->  (
z  e.  C  ->  Rel  z ) )
76ralrimiv 2965 . 2  |-  ( C 
C_  B  ->  A. z  e.  C  Rel  z )
8 reluni 5241 . 2  |-  ( Rel  U. C  <->  A. z  e.  C  Rel  z )
97, 8sylibr 224 1  |-  ( C 
C_  B  ->  Rel  U. C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   A.wral 2912    C_ wss 3574   U.cuni 4436    Fr wfr 5070   Se wse 5071    |` cres 5116   Rel wrel 5119   Predcpred 5679   Fun wfun 5882    Fn wfn 5883   ` cfv 5888  (class class class)co 6650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-ov 6653
This theorem is referenced by:  frrlem5c  31786
  Copyright terms: Public domain W3C validator