Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frrlem5 Structured version   Visualization version   Unicode version

Theorem frrlem5 31784
Description: Lemma for founded recursion. The values of two acceptable functions agree within their domains. (Contributed by Paul Chapman, 21-Apr-2012.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
frrlem5.1  |-  R  Fr  A
frrlem5.2  |-  R Se  A
frrlem5.3  |-  B  =  { f  |  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x  /\  A. y  e.  x  ( f `  y
)  =  ( y G ( f  |`  Pred ( R ,  A ,  y ) ) ) ) ) }
Assertion
Ref Expression
frrlem5  |-  ( ( g  e.  B  /\  h  e.  B )  ->  ( ( x g u  /\  x h v )  ->  u  =  v ) )
Distinct variable groups:    A, f,
g, h, x, y   
f, G, h, x, y, g    u, g, v, x    y, g   
u, h, v    R, f, g, h, x, y    B, g, h, u, v, x
Allowed substitution hints:    A( v, u)    B( y, f)    R( v, u)    G( v, u)

Proof of Theorem frrlem5
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . . . 6  |-  x  e. 
_V
2 vex 3203 . . . . . 6  |-  u  e. 
_V
31, 2breldm 5329 . . . . 5  |-  ( x g u  ->  x  e.  dom  g )
4 vex 3203 . . . . . 6  |-  v  e. 
_V
51, 4breldm 5329 . . . . 5  |-  ( x h v  ->  x  e.  dom  h )
63, 5anim12i 590 . . . 4  |-  ( ( x g u  /\  x h v )  ->  ( x  e. 
dom  g  /\  x  e.  dom  h ) )
7 elin 3796 . . . 4  |-  ( x  e.  ( dom  g  i^i  dom  h )  <->  ( x  e.  dom  g  /\  x  e.  dom  h ) )
86, 7sylibr 224 . . 3  |-  ( ( x g u  /\  x h v )  ->  x  e.  ( dom  g  i^i  dom  h ) )
9 anandir 872 . . . 4  |-  ( ( ( x g u  /\  x h v )  /\  x  e.  ( dom  g  i^i 
dom  h ) )  <-> 
( ( x g u  /\  x  e.  ( dom  g  i^i 
dom  h ) )  /\  ( x h v  /\  x  e.  ( dom  g  i^i 
dom  h ) ) ) )
102brres 5402 . . . . 5  |-  ( x ( g  |`  ( dom  g  i^i  dom  h
) ) u  <->  ( x
g u  /\  x  e.  ( dom  g  i^i 
dom  h ) ) )
114brres 5402 . . . . 5  |-  ( x ( h  |`  ( dom  g  i^i  dom  h
) ) v  <->  ( x h v  /\  x  e.  ( dom  g  i^i 
dom  h ) ) )
1210, 11anbi12i 733 . . . 4  |-  ( ( x ( g  |`  ( dom  g  i^i  dom  h ) ) u  /\  x ( h  |`  ( dom  g  i^i 
dom  h ) ) v )  <->  ( (
x g u  /\  x  e.  ( dom  g  i^i  dom  h )
)  /\  ( x h v  /\  x  e.  ( dom  g  i^i 
dom  h ) ) ) )
139, 12sylbb2 228 . . 3  |-  ( ( ( x g u  /\  x h v )  /\  x  e.  ( dom  g  i^i 
dom  h ) )  ->  ( x ( g  |`  ( dom  g  i^i  dom  h )
) u  /\  x
( h  |`  ( dom  g  i^i  dom  h
) ) v ) )
148, 13mpdan 702 . 2  |-  ( ( x g u  /\  x h v )  ->  ( x ( g  |`  ( dom  g  i^i  dom  h )
) u  /\  x
( h  |`  ( dom  g  i^i  dom  h
) ) v ) )
15 frrlem5.3 . . . . . . . . 9  |-  B  =  { f  |  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x  /\  A. y  e.  x  ( f `  y
)  =  ( y G ( f  |`  Pred ( R ,  A ,  y ) ) ) ) ) }
1615frrlem3 31782 . . . . . . . 8  |-  ( g  e.  B  ->  dom  g  C_  A )
17 ssinss1 3841 . . . . . . . 8  |-  ( dom  g  C_  A  ->  ( dom  g  i^i  dom  h )  C_  A
)
18 frrlem5.1 . . . . . . . . . 10  |-  R  Fr  A
19 frss 5081 . . . . . . . . . 10  |-  ( ( dom  g  i^i  dom  h )  C_  A  ->  ( R  Fr  A  ->  R  Fr  ( dom  g  i^i  dom  h
) ) )
2018, 19mpi 20 . . . . . . . . 9  |-  ( ( dom  g  i^i  dom  h )  C_  A  ->  R  Fr  ( dom  g  i^i  dom  h
) )
21 frrlem5.2 . . . . . . . . . 10  |-  R Se  A
22 sess2 5083 . . . . . . . . . 10  |-  ( ( dom  g  i^i  dom  h )  C_  A  ->  ( R Se  A  ->  R Se  ( dom  g  i^i 
dom  h ) ) )
2321, 22mpi 20 . . . . . . . . 9  |-  ( ( dom  g  i^i  dom  h )  C_  A  ->  R Se  ( dom  g  i^i  dom  h ) )
2420, 23jca 554 . . . . . . . 8  |-  ( ( dom  g  i^i  dom  h )  C_  A  ->  ( R  Fr  ( dom  g  i^i  dom  h
)  /\  R Se  ( dom  g  i^i  dom  h
) ) )
2516, 17, 243syl 18 . . . . . . 7  |-  ( g  e.  B  ->  ( R  Fr  ( dom  g  i^i  dom  h )  /\  R Se  ( dom  g  i^i  dom  h )
) )
2625adantr 481 . . . . . 6  |-  ( ( g  e.  B  /\  h  e.  B )  ->  ( R  Fr  ( dom  g  i^i  dom  h
)  /\  R Se  ( dom  g  i^i  dom  h
) ) )
2715frrlem4 31783 . . . . . 6  |-  ( ( g  e.  B  /\  h  e.  B )  ->  ( ( g  |`  ( dom  g  i^i  dom  h ) )  Fn  ( dom  g  i^i 
dom  h )  /\  A. a  e.  ( dom  g  i^i  dom  h
) ( ( g  |`  ( dom  g  i^i 
dom  h ) ) `
 a )  =  ( a G ( ( g  |`  ( dom  g  i^i  dom  h
) )  |`  Pred ( R ,  ( dom  g  i^i  dom  h ) ,  a ) ) ) ) )
2815frrlem4 31783 . . . . . . . 8  |-  ( ( h  e.  B  /\  g  e.  B )  ->  ( ( h  |`  ( dom  h  i^i  dom  g ) )  Fn  ( dom  h  i^i 
dom  g )  /\  A. a  e.  ( dom  h  i^i  dom  g
) ( ( h  |`  ( dom  h  i^i 
dom  g ) ) `
 a )  =  ( a G ( ( h  |`  ( dom  h  i^i  dom  g
) )  |`  Pred ( R ,  ( dom  h  i^i  dom  g ) ,  a ) ) ) ) )
2928ancoms 469 . . . . . . 7  |-  ( ( g  e.  B  /\  h  e.  B )  ->  ( ( h  |`  ( dom  h  i^i  dom  g ) )  Fn  ( dom  h  i^i 
dom  g )  /\  A. a  e.  ( dom  h  i^i  dom  g
) ( ( h  |`  ( dom  h  i^i 
dom  g ) ) `
 a )  =  ( a G ( ( h  |`  ( dom  h  i^i  dom  g
) )  |`  Pred ( R ,  ( dom  h  i^i  dom  g ) ,  a ) ) ) ) )
30 incom 3805 . . . . . . . . . . 11  |-  ( dom  g  i^i  dom  h
)  =  ( dom  h  i^i  dom  g
)
3130reseq2i 5393 . . . . . . . . . 10  |-  ( h  |`  ( dom  g  i^i 
dom  h ) )  =  ( h  |`  ( dom  h  i^i  dom  g ) )
3231fneq1i 5985 . . . . . . . . 9  |-  ( ( h  |`  ( dom  g  i^i  dom  h )
)  Fn  ( dom  g  i^i  dom  h
)  <->  ( h  |`  ( dom  h  i^i  dom  g ) )  Fn  ( dom  g  i^i 
dom  h ) )
3330fneq2i 5986 . . . . . . . . 9  |-  ( ( h  |`  ( dom  h  i^i  dom  g )
)  Fn  ( dom  g  i^i  dom  h
)  <->  ( h  |`  ( dom  h  i^i  dom  g ) )  Fn  ( dom  h  i^i 
dom  g ) )
3432, 33bitri 264 . . . . . . . 8  |-  ( ( h  |`  ( dom  g  i^i  dom  h )
)  Fn  ( dom  g  i^i  dom  h
)  <->  ( h  |`  ( dom  h  i^i  dom  g ) )  Fn  ( dom  h  i^i 
dom  g ) )
3531fveq1i 6192 . . . . . . . . . 10  |-  ( ( h  |`  ( dom  g  i^i  dom  h )
) `  a )  =  ( ( h  |`  ( dom  h  i^i 
dom  g ) ) `
 a )
36 predeq2 5683 . . . . . . . . . . . . 13  |-  ( ( dom  g  i^i  dom  h )  =  ( dom  h  i^i  dom  g )  ->  Pred ( R ,  ( dom  g  i^i  dom  h ) ,  a )  = 
Pred ( R , 
( dom  h  i^i  dom  g ) ,  a ) )
3730, 36ax-mp 5 . . . . . . . . . . . 12  |-  Pred ( R ,  ( dom  g  i^i  dom  h ) ,  a )  = 
Pred ( R , 
( dom  h  i^i  dom  g ) ,  a )
3831, 37reseq12i 5394 . . . . . . . . . . 11  |-  ( ( h  |`  ( dom  g  i^i  dom  h )
)  |`  Pred ( R , 
( dom  g  i^i  dom  h ) ,  a ) )  =  ( ( h  |`  ( dom  h  i^i  dom  g
) )  |`  Pred ( R ,  ( dom  h  i^i  dom  g ) ,  a ) )
3938oveq2i 6661 . . . . . . . . . 10  |-  ( a G ( ( h  |`  ( dom  g  i^i 
dom  h ) )  |`  Pred ( R , 
( dom  g  i^i  dom  h ) ,  a ) ) )  =  ( a G ( ( h  |`  ( dom  h  i^i  dom  g
) )  |`  Pred ( R ,  ( dom  h  i^i  dom  g ) ,  a ) ) )
4035, 39eqeq12i 2636 . . . . . . . . 9  |-  ( ( ( h  |`  ( dom  g  i^i  dom  h
) ) `  a
)  =  ( a G ( ( h  |`  ( dom  g  i^i 
dom  h ) )  |`  Pred ( R , 
( dom  g  i^i  dom  h ) ,  a ) ) )  <->  ( (
h  |`  ( dom  h  i^i  dom  g ) ) `
 a )  =  ( a G ( ( h  |`  ( dom  h  i^i  dom  g
) )  |`  Pred ( R ,  ( dom  h  i^i  dom  g ) ,  a ) ) ) )
4130, 40raleqbii 2990 . . . . . . . 8  |-  ( A. a  e.  ( dom  g  i^i  dom  h )
( ( h  |`  ( dom  g  i^i  dom  h ) ) `  a )  =  ( a G ( ( h  |`  ( dom  g  i^i  dom  h )
)  |`  Pred ( R , 
( dom  g  i^i  dom  h ) ,  a ) ) )  <->  A. a  e.  ( dom  h  i^i 
dom  g ) ( ( h  |`  ( dom  h  i^i  dom  g
) ) `  a
)  =  ( a G ( ( h  |`  ( dom  h  i^i 
dom  g ) )  |`  Pred ( R , 
( dom  h  i^i  dom  g ) ,  a ) ) ) )
4234, 41anbi12i 733 . . . . . . 7  |-  ( ( ( h  |`  ( dom  g  i^i  dom  h
) )  Fn  ( dom  g  i^i  dom  h
)  /\  A. a  e.  ( dom  g  i^i 
dom  h ) ( ( h  |`  ( dom  g  i^i  dom  h
) ) `  a
)  =  ( a G ( ( h  |`  ( dom  g  i^i 
dom  h ) )  |`  Pred ( R , 
( dom  g  i^i  dom  h ) ,  a ) ) ) )  <-> 
( ( h  |`  ( dom  h  i^i  dom  g ) )  Fn  ( dom  h  i^i 
dom  g )  /\  A. a  e.  ( dom  h  i^i  dom  g
) ( ( h  |`  ( dom  h  i^i 
dom  g ) ) `
 a )  =  ( a G ( ( h  |`  ( dom  h  i^i  dom  g
) )  |`  Pred ( R ,  ( dom  h  i^i  dom  g ) ,  a ) ) ) ) )
4329, 42sylibr 224 . . . . . 6  |-  ( ( g  e.  B  /\  h  e.  B )  ->  ( ( h  |`  ( dom  g  i^i  dom  h ) )  Fn  ( dom  g  i^i 
dom  h )  /\  A. a  e.  ( dom  g  i^i  dom  h
) ( ( h  |`  ( dom  g  i^i 
dom  h ) ) `
 a )  =  ( a G ( ( h  |`  ( dom  g  i^i  dom  h
) )  |`  Pred ( R ,  ( dom  g  i^i  dom  h ) ,  a ) ) ) ) )
44 frr3g 31779 . . . . . 6  |-  ( ( ( R  Fr  ( dom  g  i^i  dom  h
)  /\  R Se  ( dom  g  i^i  dom  h
) )  /\  (
( g  |`  ( dom  g  i^i  dom  h
) )  Fn  ( dom  g  i^i  dom  h
)  /\  A. a  e.  ( dom  g  i^i 
dom  h ) ( ( g  |`  ( dom  g  i^i  dom  h
) ) `  a
)  =  ( a G ( ( g  |`  ( dom  g  i^i 
dom  h ) )  |`  Pred ( R , 
( dom  g  i^i  dom  h ) ,  a ) ) ) )  /\  ( ( h  |`  ( dom  g  i^i 
dom  h ) )  Fn  ( dom  g  i^i  dom  h )  /\  A. a  e.  ( dom  g  i^i  dom  h
) ( ( h  |`  ( dom  g  i^i 
dom  h ) ) `
 a )  =  ( a G ( ( h  |`  ( dom  g  i^i  dom  h
) )  |`  Pred ( R ,  ( dom  g  i^i  dom  h ) ,  a ) ) ) ) )  -> 
( g  |`  ( dom  g  i^i  dom  h
) )  =  ( h  |`  ( dom  g  i^i  dom  h )
) )
4526, 27, 43, 44syl3anc 1326 . . . . 5  |-  ( ( g  e.  B  /\  h  e.  B )  ->  ( g  |`  ( dom  g  i^i  dom  h
) )  =  ( h  |`  ( dom  g  i^i  dom  h )
) )
4645breqd 4664 . . . 4  |-  ( ( g  e.  B  /\  h  e.  B )  ->  ( x ( g  |`  ( dom  g  i^i 
dom  h ) ) v  <->  x ( h  |`  ( dom  g  i^i 
dom  h ) ) v ) )
4746biimprd 238 . . 3  |-  ( ( g  e.  B  /\  h  e.  B )  ->  ( x ( h  |`  ( dom  g  i^i 
dom  h ) ) v  ->  x (
g  |`  ( dom  g  i^i  dom  h ) ) v ) )
4815frrlem2 31781 . . . . 5  |-  ( g  e.  B  ->  Fun  g )
49 funres 5929 . . . . 5  |-  ( Fun  g  ->  Fun  ( g  |`  ( dom  g  i^i 
dom  h ) ) )
50 dffun2 5898 . . . . . 6  |-  ( Fun  ( g  |`  ( dom  g  i^i  dom  h
) )  <->  ( Rel  ( g  |`  ( dom  g  i^i  dom  h
) )  /\  A. x A. u A. v
( ( x ( g  |`  ( dom  g  i^i  dom  h )
) u  /\  x
( g  |`  ( dom  g  i^i  dom  h
) ) v )  ->  u  =  v ) ) )
5150simprbi 480 . . . . 5  |-  ( Fun  ( g  |`  ( dom  g  i^i  dom  h
) )  ->  A. x A. u A. v ( ( x ( g  |`  ( dom  g  i^i 
dom  h ) ) u  /\  x ( g  |`  ( dom  g  i^i  dom  h )
) v )  ->  u  =  v )
)
52 2sp 2056 . . . . . 6  |-  ( A. u A. v ( ( x ( g  |`  ( dom  g  i^i  dom  h ) ) u  /\  x ( g  |`  ( dom  g  i^i 
dom  h ) ) v )  ->  u  =  v )  -> 
( ( x ( g  |`  ( dom  g  i^i  dom  h )
) u  /\  x
( g  |`  ( dom  g  i^i  dom  h
) ) v )  ->  u  =  v ) )
5352sps 2055 . . . . 5  |-  ( A. x A. u A. v
( ( x ( g  |`  ( dom  g  i^i  dom  h )
) u  /\  x
( g  |`  ( dom  g  i^i  dom  h
) ) v )  ->  u  =  v )  ->  ( (
x ( g  |`  ( dom  g  i^i  dom  h ) ) u  /\  x ( g  |`  ( dom  g  i^i 
dom  h ) ) v )  ->  u  =  v ) )
5448, 49, 51, 534syl 19 . . . 4  |-  ( g  e.  B  ->  (
( x ( g  |`  ( dom  g  i^i 
dom  h ) ) u  /\  x ( g  |`  ( dom  g  i^i  dom  h )
) v )  ->  u  =  v )
)
5554adantr 481 . . 3  |-  ( ( g  e.  B  /\  h  e.  B )  ->  ( ( x ( g  |`  ( dom  g  i^i  dom  h )
) u  /\  x
( g  |`  ( dom  g  i^i  dom  h
) ) v )  ->  u  =  v ) )
5647, 55sylan2d 499 . 2  |-  ( ( g  e.  B  /\  h  e.  B )  ->  ( ( x ( g  |`  ( dom  g  i^i  dom  h )
) u  /\  x
( h  |`  ( dom  g  i^i  dom  h
) ) v )  ->  u  =  v ) )
5714, 56syl5 34 1  |-  ( ( g  e.  B  /\  h  e.  B )  ->  ( ( x g u  /\  x h v )  ->  u  =  v ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   A.wral 2912    i^i cin 3573    C_ wss 3574   class class class wbr 4653    Fr wfr 5070   Se wse 5071   dom cdm 5114    |` cres 5116   Rel wrel 5119   Predcpred 5679   Fun wfun 5882    Fn wfn 5883   ` cfv 5888  (class class class)co 6650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-trpred 31718
This theorem is referenced by:  frrlem5c  31786
  Copyright terms: Public domain W3C validator