Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsovfvfvd Structured version   Visualization version   Unicode version

Theorem fsovfvfvd 38305
Description: Value of the operator,  ( A O B ), which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets,  A and  B, when applied to function  F and element  Y. (Contributed by RP, 25-Apr-2021.)
Hypotheses
Ref Expression
fsovd.fs  |-  O  =  ( a  e.  _V ,  b  e.  _V  |->  ( f  e.  ( ~P b  ^m  a
)  |->  ( y  e.  b  |->  { x  e.  a  |  y  e.  ( f `  x
) } ) ) )
fsovd.a  |-  ( ph  ->  A  e.  V )
fsovd.b  |-  ( ph  ->  B  e.  W )
fsovfvd.g  |-  G  =  ( A O B )
fsovfvd.f  |-  ( ph  ->  F  e.  ( ~P B  ^m  A ) )
fsovfvfvd.h  |-  H  =  ( G `  F
)
fsovfvfvd.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
fsovfvfvd  |-  ( ph  ->  ( H `  Y
)  =  { x  e.  A  |  Y  e.  ( F `  x
) } )
Distinct variable groups:    A, a,
b, f, x, y    B, a, b, f, y   
f, F, x, y   
x, Y, y    ph, a,
b, f, y
Allowed substitution hints:    ph( x)    B( x)    F( a, b)    G( x, y, f, a, b)    H( x, y, f, a, b)    O( x, y, f, a, b)    V( x, y, f, a, b)    W( x, y, f, a, b)    Y( f, a, b)

Proof of Theorem fsovfvfvd
StepHypRef Expression
1 fsovfvfvd.h . . 3  |-  H  =  ( G `  F
)
2 fsovd.fs . . . 4  |-  O  =  ( a  e.  _V ,  b  e.  _V  |->  ( f  e.  ( ~P b  ^m  a
)  |->  ( y  e.  b  |->  { x  e.  a  |  y  e.  ( f `  x
) } ) ) )
3 fsovd.a . . . 4  |-  ( ph  ->  A  e.  V )
4 fsovd.b . . . 4  |-  ( ph  ->  B  e.  W )
5 fsovfvd.g . . . 4  |-  G  =  ( A O B )
6 fsovfvd.f . . . 4  |-  ( ph  ->  F  e.  ( ~P B  ^m  A ) )
72, 3, 4, 5, 6fsovfvd 38304 . . 3  |-  ( ph  ->  ( G `  F
)  =  ( y  e.  B  |->  { x  e.  A  |  y  e.  ( F `  x
) } ) )
81, 7syl5eq 2668 . 2  |-  ( ph  ->  H  =  ( y  e.  B  |->  { x  e.  A  |  y  e.  ( F `  x
) } ) )
9 eleq1 2689 . . . 4  |-  ( y  =  Y  ->  (
y  e.  ( F `
 x )  <->  Y  e.  ( F `  x ) ) )
109rabbidv 3189 . . 3  |-  ( y  =  Y  ->  { x  e.  A  |  y  e.  ( F `  x
) }  =  {
x  e.  A  |  Y  e.  ( F `  x ) } )
1110adantl 482 . 2  |-  ( (
ph  /\  y  =  Y )  ->  { x  e.  A  |  y  e.  ( F `  x
) }  =  {
x  e.  A  |  Y  e.  ( F `  x ) } )
12 fsovfvfvd.y . 2  |-  ( ph  ->  Y  e.  B )
13 rabexg 4812 . . 3  |-  ( A  e.  V  ->  { x  e.  A  |  Y  e.  ( F `  x
) }  e.  _V )
143, 13syl 17 . 2  |-  ( ph  ->  { x  e.  A  |  Y  e.  ( F `  x ) }  e.  _V )
158, 11, 12, 14fvmptd 6288 1  |-  ( ph  ->  ( H `  Y
)  =  { x  e.  A  |  Y  e.  ( F `  x
) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200   ~Pcpw 4158    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    ^m cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655
This theorem is referenced by:  ntrneiel  38379
  Copyright terms: Public domain W3C validator