Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funresdm1 Structured version   Visualization version   Unicode version

Theorem funresdm1 29416
Description: Restriction of a disjoint union to the domain of the first term. (Contributed by Thierry Arnoux, 9-Dec-2021.)
Assertion
Ref Expression
funresdm1  |-  ( ( Rel  A  /\  ( dom  A  i^i  dom  B
)  =  (/) )  -> 
( ( A  u.  B )  |`  dom  A
)  =  A )

Proof of Theorem funresdm1
StepHypRef Expression
1 resundir 5411 . 2  |-  ( ( A  u.  B )  |`  dom  A )  =  ( ( A  |`  dom  A )  u.  ( B  |`  dom  A ) )
2 resdm 5441 . . . . 5  |-  ( Rel 
A  ->  ( A  |` 
dom  A )  =  A )
32adantr 481 . . . 4  |-  ( ( Rel  A  /\  ( dom  A  i^i  dom  B
)  =  (/) )  -> 
( A  |`  dom  A
)  =  A )
4 dmres 5419 . . . . . 6  |-  dom  ( B  |`  dom  A )  =  ( dom  A  i^i  dom  B )
5 simpr 477 . . . . . 6  |-  ( ( Rel  A  /\  ( dom  A  i^i  dom  B
)  =  (/) )  -> 
( dom  A  i^i  dom 
B )  =  (/) )
64, 5syl5eq 2668 . . . . 5  |-  ( ( Rel  A  /\  ( dom  A  i^i  dom  B
)  =  (/) )  ->  dom  ( B  |`  dom  A
)  =  (/) )
7 relres 5426 . . . . . 6  |-  Rel  ( B  |`  dom  A )
8 reldm0 5343 . . . . . 6  |-  ( Rel  ( B  |`  dom  A
)  ->  ( ( B  |`  dom  A )  =  (/)  <->  dom  ( B  |`  dom  A )  =  (/) ) )
97, 8ax-mp 5 . . . . 5  |-  ( ( B  |`  dom  A )  =  (/)  <->  dom  ( B  |`  dom  A )  =  (/) )
106, 9sylibr 224 . . . 4  |-  ( ( Rel  A  /\  ( dom  A  i^i  dom  B
)  =  (/) )  -> 
( B  |`  dom  A
)  =  (/) )
113, 10uneq12d 3768 . . 3  |-  ( ( Rel  A  /\  ( dom  A  i^i  dom  B
)  =  (/) )  -> 
( ( A  |`  dom  A )  u.  ( B  |`  dom  A ) )  =  ( A  u.  (/) ) )
12 un0 3967 . . 3  |-  ( A  u.  (/) )  =  A
1311, 12syl6eq 2672 . 2  |-  ( ( Rel  A  /\  ( dom  A  i^i  dom  B
)  =  (/) )  -> 
( ( A  |`  dom  A )  u.  ( B  |`  dom  A ) )  =  A )
141, 13syl5eq 2668 1  |-  ( ( Rel  A  /\  ( dom  A  i^i  dom  B
)  =  (/) )  -> 
( ( A  u.  B )  |`  dom  A
)  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    u. cun 3572    i^i cin 3573   (/)c0 3915   dom cdm 5114    |` cres 5116   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-dm 5124  df-res 5126
This theorem is referenced by:  fnunres1  29417
  Copyright terms: Public domain W3C validator