MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvimacnvALT Structured version   Visualization version   Unicode version

Theorem fvimacnvALT 6336
Description: Alternate proof of fvimacnv 6332, based on funimass3 6333. If funimass3 6333 is ever proved directly, as opposed to using funimacnv 5970 pointwise, then the proof of funimacnv 5970 should be replaced with this one. (Contributed by Raph Levien, 20-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
fvimacnvALT  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  e.  B  <->  A  e.  ( `' F " B ) ) )

Proof of Theorem fvimacnvALT
StepHypRef Expression
1 snssi 4339 . . 3  |-  ( A  e.  dom  F  ->  { A }  C_  dom  F )
2 funimass3 6333 . . 3  |-  ( ( Fun  F  /\  { A }  C_  dom  F
)  ->  ( ( F " { A }
)  C_  B  <->  { A }  C_  ( `' F " B ) ) )
31, 2sylan2 491 . 2  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F " { A } )  C_  B 
<->  { A }  C_  ( `' F " B ) ) )
4 fvex 6201 . . . 4  |-  ( F `
 A )  e. 
_V
54snss 4316 . . 3  |-  ( ( F `  A )  e.  B  <->  { ( F `  A ) }  C_  B )
6 eqid 2622 . . . . . 6  |-  dom  F  =  dom  F
7 df-fn 5891 . . . . . . 7  |-  ( F  Fn  dom  F  <->  ( Fun  F  /\  dom  F  =  dom  F ) )
87biimpri 218 . . . . . 6  |-  ( ( Fun  F  /\  dom  F  =  dom  F )  ->  F  Fn  dom  F )
96, 8mpan2 707 . . . . 5  |-  ( Fun 
F  ->  F  Fn  dom  F )
10 fnsnfv 6258 . . . . 5  |-  ( ( F  Fn  dom  F  /\  A  e.  dom  F )  ->  { ( F `  A ) }  =  ( F " { A } ) )
119, 10sylan 488 . . . 4  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  { ( F `  A ) }  =  ( F " { A } ) )
1211sseq1d 3632 . . 3  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( { ( F `
 A ) } 
C_  B  <->  ( F " { A } ) 
C_  B ) )
135, 12syl5bb 272 . 2  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  e.  B  <->  ( F " { A } )  C_  B
) )
14 snssg 4327 . . 3  |-  ( A  e.  dom  F  -> 
( A  e.  ( `' F " B )  <->  { A }  C_  ( `' F " B ) ) )
1514adantl 482 . 2  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( A  e.  ( `' F " B )  <->  { A }  C_  ( `' F " B ) ) )
163, 13, 153bitr4d 300 1  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  e.  B  <->  A  e.  ( `' F " B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   {csn 4177   `'ccnv 5113   dom cdm 5114   "cima 5117   Fun wfun 5882    Fn wfn 5883   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator