Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gneispace0nelrn Structured version   Visualization version   Unicode version

Theorem gneispace0nelrn 38438
Description: A generic neighborhood space has a non-empty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021.)
Hypothesis
Ref Expression
gneispace.a  |-  A  =  { f  |  ( f : dom  f --> ( ~P ( ~P dom  f  \  { (/) } ) 
\  { (/) } )  /\  A. p  e. 
dom  f A. n  e.  ( f `  p
) ( p  e.  n  /\  A. s  e.  ~P  dom  f ( n  C_  s  ->  s  e.  ( f `  p ) ) ) ) }
Assertion
Ref Expression
gneispace0nelrn  |-  ( F  e.  A  ->  A. p  e.  dom  F ( F `
 p )  =/=  (/) )
Distinct variable groups:    n, F, p, f    F, s, f   
f, n, p
Allowed substitution hints:    A( f, n, s, p)

Proof of Theorem gneispace0nelrn
StepHypRef Expression
1 elex 3212 . . . . 5  |-  ( F  e.  A  ->  F  e.  _V )
2 gneispace.a . . . . . 6  |-  A  =  { f  |  ( f : dom  f --> ( ~P ( ~P dom  f  \  { (/) } ) 
\  { (/) } )  /\  A. p  e. 
dom  f A. n  e.  ( f `  p
) ( p  e.  n  /\  A. s  e.  ~P  dom  f ( n  C_  s  ->  s  e.  ( f `  p ) ) ) ) }
32gneispace 38432 . . . . 5  |-  ( F  e.  _V  ->  ( F  e.  A  <->  ( Fun  F  /\  ran  F  C_  ~P ~P dom  F  /\  A. p  e.  dom  F
( ( F `  p )  =/=  (/)  /\  A. n  e.  ( F `  p ) ( p  e.  n  /\  A. s  e.  ~P  dom  F
( n  C_  s  ->  s  e.  ( F `
 p ) ) ) ) ) ) )
41, 3syl 17 . . . 4  |-  ( F  e.  A  ->  ( F  e.  A  <->  ( Fun  F  /\  ran  F  C_  ~P ~P dom  F  /\  A. p  e.  dom  F
( ( F `  p )  =/=  (/)  /\  A. n  e.  ( F `  p ) ( p  e.  n  /\  A. s  e.  ~P  dom  F
( n  C_  s  ->  s  e.  ( F `
 p ) ) ) ) ) ) )
54ibi 256 . . 3  |-  ( F  e.  A  ->  ( Fun  F  /\  ran  F  C_ 
~P ~P dom  F  /\  A. p  e.  dom  F ( ( F `  p )  =/=  (/)  /\  A. n  e.  ( F `  p ) ( p  e.  n  /\  A. s  e.  ~P  dom  F
( n  C_  s  ->  s  e.  ( F `
 p ) ) ) ) ) )
65simp3d 1075 . 2  |-  ( F  e.  A  ->  A. p  e.  dom  F ( ( F `  p )  =/=  (/)  /\  A. n  e.  ( F `  p
) ( p  e.  n  /\  A. s  e.  ~P  dom  F ( n  C_  s  ->  s  e.  ( F `  p ) ) ) ) )
7 simpl 473 . . 3  |-  ( ( ( F `  p
)  =/=  (/)  /\  A. n  e.  ( F `  p ) ( p  e.  n  /\  A. s  e.  ~P  dom  F
( n  C_  s  ->  s  e.  ( F `
 p ) ) ) )  ->  ( F `  p )  =/=  (/) )
87ralimi 2952 . 2  |-  ( A. p  e.  dom  F ( ( F `  p
)  =/=  (/)  /\  A. n  e.  ( F `  p ) ( p  e.  n  /\  A. s  e.  ~P  dom  F
( n  C_  s  ->  s  e.  ( F `
 p ) ) ) )  ->  A. p  e.  dom  F ( F `
 p )  =/=  (/) )
96, 8syl 17 1  |-  ( F  e.  A  ->  A. p  e.  dom  F ( F `
 p )  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   dom cdm 5114   ran crn 5115   Fun wfun 5882   -->wf 5884   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896
This theorem is referenced by:  gneispace0nelrn2  38439
  Copyright terms: Public domain W3C validator