MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grprinvd Structured version   Visualization version   Unicode version

Theorem grprinvd 6873
Description: Deduce right inverse from left inverse and left identity in an associative structure (such as a group). (Contributed by NM, 10-Aug-2013.) (Proof shortened by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grprinvlem.c  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .+  y )  e.  B
)
grprinvlem.o  |-  ( ph  ->  O  e.  B )
grprinvlem.i  |-  ( (
ph  /\  x  e.  B )  ->  ( O  .+  x )  =  x )
grprinvlem.a  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
grprinvlem.n  |-  ( (
ph  /\  x  e.  B )  ->  E. y  e.  B  ( y  .+  x )  =  O )
grprinvd.x  |-  ( (
ph  /\  ps )  ->  X  e.  B )
grprinvd.n  |-  ( (
ph  /\  ps )  ->  N  e.  B )
grprinvd.e  |-  ( (
ph  /\  ps )  ->  ( N  .+  X
)  =  O )
Assertion
Ref Expression
grprinvd  |-  ( (
ph  /\  ps )  ->  ( X  .+  N
)  =  O )
Distinct variable groups:    x, y,
z, B    x, O, y, z    ph, x, y, z    y, N, z   
x,  .+ , y, z    y, X, z    ps, y
Allowed substitution hints:    ps( x, z)    N( x)    X( x)

Proof of Theorem grprinvd
Dummy variables  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grprinvlem.c . 2  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .+  y )  e.  B
)
2 grprinvlem.o . 2  |-  ( ph  ->  O  e.  B )
3 grprinvlem.i . 2  |-  ( (
ph  /\  x  e.  B )  ->  ( O  .+  x )  =  x )
4 grprinvlem.a . 2  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
5 grprinvlem.n . 2  |-  ( (
ph  /\  x  e.  B )  ->  E. y  e.  B  ( y  .+  x )  =  O )
613expb 1266 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x  .+  y
)  e.  B )
76caovclg 6826 . . . 4  |-  ( (
ph  /\  ( u  e.  B  /\  v  e.  B ) )  -> 
( u  .+  v
)  e.  B )
87adantlr 751 . . 3  |-  ( ( ( ph  /\  ps )  /\  ( u  e.  B  /\  v  e.  B ) )  -> 
( u  .+  v
)  e.  B )
9 grprinvd.x . . 3  |-  ( (
ph  /\  ps )  ->  X  e.  B )
10 grprinvd.n . . 3  |-  ( (
ph  /\  ps )  ->  N  e.  B )
118, 9, 10caovcld 6827 . 2  |-  ( (
ph  /\  ps )  ->  ( X  .+  N
)  e.  B )
124caovassg 6832 . . . . 5  |-  ( (
ph  /\  ( u  e.  B  /\  v  e.  B  /\  w  e.  B ) )  -> 
( ( u  .+  v )  .+  w
)  =  ( u 
.+  ( v  .+  w ) ) )
1312adantlr 751 . . . 4  |-  ( ( ( ph  /\  ps )  /\  ( u  e.  B  /\  v  e.  B  /\  w  e.  B ) )  -> 
( ( u  .+  v )  .+  w
)  =  ( u 
.+  ( v  .+  w ) ) )
1413, 9, 10, 11caovassd 6833 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( X  .+  N )  .+  ( X  .+  N ) )  =  ( X  .+  ( N  .+  ( X 
.+  N ) ) ) )
15 grprinvd.e . . . . . 6  |-  ( (
ph  /\  ps )  ->  ( N  .+  X
)  =  O )
1615oveq1d 6665 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( ( N  .+  X )  .+  N
)  =  ( O 
.+  N ) )
1713, 10, 9, 10caovassd 6833 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( ( N  .+  X )  .+  N
)  =  ( N 
.+  ( X  .+  N ) ) )
18 oveq2 6658 . . . . . . 7  |-  ( y  =  N  ->  ( O  .+  y )  =  ( O  .+  N
) )
19 id 22 . . . . . . 7  |-  ( y  =  N  ->  y  =  N )
2018, 19eqeq12d 2637 . . . . . 6  |-  ( y  =  N  ->  (
( O  .+  y
)  =  y  <->  ( O  .+  N )  =  N ) )
213ralrimiva 2966 . . . . . . . 8  |-  ( ph  ->  A. x  e.  B  ( O  .+  x )  =  x )
22 oveq2 6658 . . . . . . . . . 10  |-  ( x  =  y  ->  ( O  .+  x )  =  ( O  .+  y
) )
23 id 22 . . . . . . . . . 10  |-  ( x  =  y  ->  x  =  y )
2422, 23eqeq12d 2637 . . . . . . . . 9  |-  ( x  =  y  ->  (
( O  .+  x
)  =  x  <->  ( O  .+  y )  =  y ) )
2524cbvralv 3171 . . . . . . . 8  |-  ( A. x  e.  B  ( O  .+  x )  =  x  <->  A. y  e.  B  ( O  .+  y )  =  y )
2621, 25sylib 208 . . . . . . 7  |-  ( ph  ->  A. y  e.  B  ( O  .+  y )  =  y )
2726adantr 481 . . . . . 6  |-  ( (
ph  /\  ps )  ->  A. y  e.  B  ( O  .+  y )  =  y )
2820, 27, 10rspcdva 3316 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( O  .+  N
)  =  N )
2916, 17, 283eqtr3d 2664 . . . 4  |-  ( (
ph  /\  ps )  ->  ( N  .+  ( X  .+  N ) )  =  N )
3029oveq2d 6666 . . 3  |-  ( (
ph  /\  ps )  ->  ( X  .+  ( N  .+  ( X  .+  N ) ) )  =  ( X  .+  N ) )
3114, 30eqtrd 2656 . 2  |-  ( (
ph  /\  ps )  ->  ( ( X  .+  N )  .+  ( X  .+  N ) )  =  ( X  .+  N ) )
321, 2, 3, 4, 5, 11, 31grprinvlem 6872 1  |-  ( (
ph  /\  ps )  ->  ( X  .+  N
)  =  O )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913  (class class class)co 6650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by:  grpridd  6874  grprcan  17455  grprinv  17469
  Copyright terms: Public domain W3C validator