| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grprcan | Structured version Visualization version Unicode version | ||
| Description: Right cancellation law for groups. (Contributed by NM, 24-Aug-2011.) (Proof shortened by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| grprcan.b |
|
| grprcan.p |
|
| Ref | Expression |
|---|---|
| grprcan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grprcan.b |
. . . . 5
| |
| 2 | grprcan.p |
. . . . 5
| |
| 3 | eqid 2622 |
. . . . 5
| |
| 4 | 1, 2, 3 | grpinvex 17432 |
. . . 4
|
| 5 | 4 | 3ad2antr3 1228 |
. . 3
|
| 6 | simprr 796 |
. . . . . . . 8
| |
| 7 | 6 | oveq1d 6665 |
. . . . . . 7
|
| 8 | simpll 790 |
. . . . . . . . 9
| |
| 9 | 1, 2 | grpass 17431 |
. . . . . . . . 9
|
| 10 | 8, 9 | sylan 488 |
. . . . . . . 8
|
| 11 | simplr1 1103 |
. . . . . . . 8
| |
| 12 | simplr3 1105 |
. . . . . . . 8
| |
| 13 | simprll 802 |
. . . . . . . 8
| |
| 14 | 10, 11, 12, 13 | caovassd 6833 |
. . . . . . 7
|
| 15 | simplr2 1104 |
. . . . . . . 8
| |
| 16 | 10, 15, 12, 13 | caovassd 6833 |
. . . . . . 7
|
| 17 | 7, 14, 16 | 3eqtr3d 2664 |
. . . . . 6
|
| 18 | 1, 2 | grpcl 17430 |
. . . . . . . . . 10
|
| 19 | 8, 18 | syl3an1 1359 |
. . . . . . . . 9
|
| 20 | 1, 3 | grpidcl 17450 |
. . . . . . . . . 10
|
| 21 | 8, 20 | syl 17 |
. . . . . . . . 9
|
| 22 | 1, 2, 3 | grplid 17452 |
. . . . . . . . . 10
|
| 23 | 8, 22 | sylan 488 |
. . . . . . . . 9
|
| 24 | 1, 2, 3 | grpinvex 17432 |
. . . . . . . . . 10
|
| 25 | 8, 24 | sylan 488 |
. . . . . . . . 9
|
| 26 | simpr 477 |
. . . . . . . . 9
| |
| 27 | 13 | adantr 481 |
. . . . . . . . 9
|
| 28 | simprlr 803 |
. . . . . . . . . 10
| |
| 29 | 28 | adantr 481 |
. . . . . . . . 9
|
| 30 | 19, 21, 23, 10, 25, 26, 27, 29 | grprinvd 6873 |
. . . . . . . 8
|
| 31 | 12, 30 | mpdan 702 |
. . . . . . 7
|
| 32 | 31 | oveq2d 6666 |
. . . . . 6
|
| 33 | 31 | oveq2d 6666 |
. . . . . 6
|
| 34 | 17, 32, 33 | 3eqtr3d 2664 |
. . . . 5
|
| 35 | 1, 2, 3 | grprid 17453 |
. . . . . 6
|
| 36 | 8, 11, 35 | syl2anc 693 |
. . . . 5
|
| 37 | 1, 2, 3 | grprid 17453 |
. . . . . 6
|
| 38 | 8, 15, 37 | syl2anc 693 |
. . . . 5
|
| 39 | 34, 36, 38 | 3eqtr3d 2664 |
. . . 4
|
| 40 | 39 | expr 643 |
. . 3
|
| 41 | 5, 40 | rexlimddv 3035 |
. 2
|
| 42 | oveq1 6657 |
. 2
| |
| 43 | 41, 42 | impbid1 215 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-riota 6611 df-ov 6653 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 |
| This theorem is referenced by: grpinveu 17456 grpid 17457 grpidlcan 17481 grpinvssd 17492 grpsubrcan 17496 grpsubadd 17503 sylow1lem4 18016 ringcom 18579 ringrz 18588 lmodcom 18909 ogrpaddlt 29718 rhmunitinv 29822 isnumbasgrplem2 37674 |
| Copyright terms: Public domain | W3C validator |