| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hbae | Structured version Visualization version Unicode version | ||
| Description: All variables are effectively bound in an identical variable specifier. (Contributed by NM, 13-May-1993.) (Proof shortened by Wolf Lammen, 21-Apr-2018.) |
| Ref | Expression |
|---|---|
| hbae |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sp 2053 |
. . . . 5
| |
| 2 | axc9 2302 |
. . . . 5
| |
| 3 | 1, 2 | syl7 74 |
. . . 4
|
| 4 | axc11r 2187 |
. . . 4
| |
| 5 | axc11 2314 |
. . . . . 6
| |
| 6 | 5 | pm2.43i 52 |
. . . . 5
|
| 7 | axc11r 2187 |
. . . . 5
| |
| 8 | 6, 7 | syl5 34 |
. . . 4
|
| 9 | 3, 4, 8 | pm2.61ii 177 |
. . 3
|
| 10 | 9 | axc4i 2131 |
. 2
|
| 11 | ax-11 2034 |
. 2
| |
| 12 | 10, 11 | syl 17 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: nfae 2316 hbnae 2317 aevALTOLD 2321 drex2 2328 ax6e2eq 38773 |
| Copyright terms: Public domain | W3C validator |