MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.61ii Structured version   Visualization version   Unicode version

Theorem pm2.61ii 177
Description: Inference eliminating two antecedents. (Contributed by NM, 4-Jan-1993.) (Proof shortened by Josh Purinton, 29-Dec-2000.)
Hypotheses
Ref Expression
pm2.61ii.1  |-  ( -. 
ph  ->  ( -.  ps  ->  ch ) )
pm2.61ii.2  |-  ( ph  ->  ch )
pm2.61ii.3  |-  ( ps 
->  ch )
Assertion
Ref Expression
pm2.61ii  |-  ch

Proof of Theorem pm2.61ii
StepHypRef Expression
1 pm2.61ii.2 . 2  |-  ( ph  ->  ch )
2 pm2.61ii.1 . . 3  |-  ( -. 
ph  ->  ( -.  ps  ->  ch ) )
3 pm2.61ii.3 . . 3  |-  ( ps 
->  ch )
42, 3pm2.61d2 172 . 2  |-  ( -. 
ph  ->  ch )
51, 4pm2.61i 176 1  |-  ch
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  pm2.61iii  179  hbae  2315  pssnn  8178  alephadd  9399  axextnd  9413  axunnd  9418  axpownd  9423  axregndlem2  9425  axregnd  9426  axinfndlem1  9427  axinfnd  9428  2cshwcshw  13571  ressress  15938  frgrreg  27252  bj-hbaeb2  32805  hbae-o  34188  hbequid  34194  ax5eq  34217  ax5el  34222  odd2prm2  41627
  Copyright terms: Public domain W3C validator