Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1ffval Structured version   Visualization version   Unicode version

Theorem hdmap1ffval 37085
Description: Preliminary map from vectors to functionals in the closed kernel dual space. (Contributed by NM, 14-May-2015.)
Hypothesis
Ref Expression
hdmap1val.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
hdmap1ffval  |-  ( K  e.  X  ->  (HDMap1 `  K )  =  ( w  e.  H  |->  { a  |  [. (
( DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  K ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) } ) )
Distinct variable groups:    w, H    a, c, d, j, m, n, u, v, w, K    h, a, x, c, d, j, m, n, u, v, w
Allowed substitution hints:    H( x, v, u, h, j, m, n, a, c, d)    K( x, h)    X( x, w, v, u, h, j, m, n, a, c, d)

Proof of Theorem hdmap1ffval
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2  |-  ( K  e.  X  ->  K  e.  _V )
2 fveq2 6191 . . . . 5  |-  ( k  =  K  ->  ( LHyp `  k )  =  ( LHyp `  K
) )
3 hdmap1val.h . . . . 5  |-  H  =  ( LHyp `  K
)
42, 3syl6eqr 2674 . . . 4  |-  ( k  =  K  ->  ( LHyp `  k )  =  H )
5 fveq2 6191 . . . . . . 7  |-  ( k  =  K  ->  ( DVecH `  k )  =  ( DVecH `  K )
)
65fveq1d 6193 . . . . . 6  |-  ( k  =  K  ->  (
( DVecH `  k ) `  w )  =  ( ( DVecH `  K ) `  w ) )
7 fveq2 6191 . . . . . . . . . 10  |-  ( k  =  K  ->  (LCDual `  k )  =  (LCDual `  K ) )
87fveq1d 6193 . . . . . . . . 9  |-  ( k  =  K  ->  (
(LCDual `  k ) `  w )  =  ( (LCDual `  K ) `  w ) )
9 fveq2 6191 . . . . . . . . . . . . 13  |-  ( k  =  K  ->  (mapd `  k )  =  (mapd `  K ) )
109fveq1d 6193 . . . . . . . . . . . 12  |-  ( k  =  K  ->  (
(mapd `  k ) `  w )  =  ( (mapd `  K ) `  w ) )
1110sbceq1d 3440 . . . . . . . . . . 11  |-  ( k  =  K  ->  ( [. ( (mapd `  k
) `  w )  /  m ]. a  e.  ( x  e.  ( ( v  X.  d
)  X.  v ) 
|->  if ( ( 2nd `  x )  =  ( 0g `  u ) ,  ( 0g `  c ) ,  (
iota_ h  e.  d 
( ( m `  ( n `  {
( 2nd `  x
) } ) )  =  ( j `  { h } )  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <->  [. ( (mapd `  K
) `  w )  /  m ]. a  e.  ( x  e.  ( ( v  X.  d
)  X.  v ) 
|->  if ( ( 2nd `  x )  =  ( 0g `  u ) ,  ( 0g `  c ) ,  (
iota_ h  e.  d 
( ( m `  ( n `  {
( 2nd `  x
) } ) )  =  ( j `  { h } )  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) ) )
1211sbcbidv 3490 . . . . . . . . . 10  |-  ( k  =  K  ->  ( [. ( LSpan `  c )  /  j ]. [. (
(mapd `  k ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <->  [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) ) )
1312sbcbidv 3490 . . . . . . . . 9  |-  ( k  =  K  ->  ( [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  k ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <->  [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) ) )
148, 13sbceqbid 3442 . . . . . . . 8  |-  ( k  =  K  ->  ( [. ( (LCDual `  k
) `  w )  /  c ]. [. ( Base `  c )  / 
d ]. [. ( LSpan `  c )  /  j ]. [. ( (mapd `  k ) `  w
)  /  m ]. a  e.  ( x  e.  ( ( v  X.  d )  X.  v
)  |->  if ( ( 2nd `  x )  =  ( 0g `  u ) ,  ( 0g `  c ) ,  ( iota_ h  e.  d  ( ( m `
 ( n `  { ( 2nd `  x
) } ) )  =  ( j `  { h } )  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <->  [. ( (LCDual `  K
) `  w )  /  c ]. [. ( Base `  c )  / 
d ]. [. ( LSpan `  c )  /  j ]. [. ( (mapd `  K ) `  w
)  /  m ]. a  e.  ( x  e.  ( ( v  X.  d )  X.  v
)  |->  if ( ( 2nd `  x )  =  ( 0g `  u ) ,  ( 0g `  c ) ,  ( iota_ h  e.  d  ( ( m `
 ( n `  { ( 2nd `  x
) } ) )  =  ( j `  { h } )  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) ) )
1514sbcbidv 3490 . . . . . . 7  |-  ( k  =  K  ->  ( [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  k ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  k ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <->  [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  K ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) ) )
1615sbcbidv 3490 . . . . . 6  |-  ( k  =  K  ->  ( [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  k ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  k ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <->  [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  K ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) ) )
176, 16sbceqbid 3442 . . . . 5  |-  ( k  =  K  ->  ( [. ( ( DVecH `  k
) `  w )  /  u ]. [. ( Base `  u )  / 
v ]. [. ( LSpan `  u )  /  n ]. [. ( (LCDual `  k ) `  w
)  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  k ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <->  [. ( ( DVecH `  K
) `  w )  /  u ]. [. ( Base `  u )  / 
v ]. [. ( LSpan `  u )  /  n ]. [. ( (LCDual `  K ) `  w
)  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) ) )
1817abbidv 2741 . . . 4  |-  ( k  =  K  ->  { a  |  [. ( (
DVecH `  k ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  k ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  k ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) }  =  { a  |  [. ( (
DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  K ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) } )
194, 18mpteq12dv 4733 . . 3  |-  ( k  =  K  ->  (
w  e.  ( LHyp `  k )  |->  { a  |  [. ( (
DVecH `  k ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  k ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  k ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) } )  =  ( w  e.  H  |->  { a  |  [. (
( DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  K ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) } ) )
20 df-hdmap1 37083 . . 3  |- HDMap1  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k )  |->  { a  |  [. ( (
DVecH `  k ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  k ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  k ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) } ) )
21 fvex 6201 . . . . 5  |-  ( LHyp `  K )  e.  _V
223, 21eqeltri 2697 . . . 4  |-  H  e. 
_V
2322mptex 6486 . . 3  |-  ( w  e.  H  |->  { a  |  [. ( (
DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  K ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) } )  e.  _V
2419, 20, 23fvmpt 6282 . 2  |-  ( K  e.  _V  ->  (HDMap1 `  K )  =  ( w  e.  H  |->  { a  |  [. (
( DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  K ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) } ) )
251, 24syl 17 1  |-  ( K  e.  X  ->  (HDMap1 `  K )  =  ( w  e.  H  |->  { a  |  [. (
( DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  K ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   _Vcvv 3200   [.wsbc 3435   ifcif 4086   {csn 4177    |-> cmpt 4729    X. cxp 5112   ` cfv 5888   iota_crio 6610  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   Basecbs 15857   0gc0g 16100   -gcsg 17424   LSpanclspn 18971   LHypclh 35270   DVecHcdvh 36367  LCDualclcd 36875  mapdcmpd 36913  HDMap1chdma1 37081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-hdmap1 37083
This theorem is referenced by:  hdmap1fval  37086
  Copyright terms: Public domain W3C validator