| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvaddid2 | Structured version Visualization version Unicode version | ||
| Description: Addition with the zero vector. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvaddid2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hv0cl 27860 |
. . 3
| |
| 2 | ax-hvcom 27858 |
. . 3
| |
| 3 | 1, 2 | mpan2 707 |
. 2
|
| 4 | ax-hvaddid 27861 |
. 2
| |
| 5 | 3, 4 | eqtr3d 2658 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-ext 2602 ax-hvcom 27858 ax-hv0cl 27860 ax-hvaddid 27861 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-cleq 2615 |
| This theorem is referenced by: hv2neg 27885 hvaddid2i 27886 hvaddsub4 27935 hilablo 28017 hilid 28018 shunssi 28227 spanunsni 28438 5oalem2 28514 3oalem2 28522 |
| Copyright terms: Public domain | W3C validator |