![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvaddid2i | Structured version Visualization version Unicode version |
Description: Addition with the zero vector. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvaddid2.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
hvaddid2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvaddid2.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | hvaddid2 27880 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-ext 2602 ax-hvcom 27858 ax-hv0cl 27860 ax-hvaddid 27861 |
This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-cleq 2615 |
This theorem is referenced by: hvsubeq0i 27920 hvaddcani 27922 hsn0elch 28105 hhssnv 28121 shscli 28176 |
Copyright terms: Public domain | W3C validator |