HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  5oalem2 Structured version   Visualization version   Unicode version

Theorem 5oalem2 28514
Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
5oalem2.1  |-  A  e.  SH
5oalem2.2  |-  B  e.  SH
5oalem2.3  |-  C  e.  SH
5oalem2.4  |-  D  e.  SH
Assertion
Ref Expression
5oalem2  |-  ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( x  +h  y )  =  ( z  +h  w ) )  ->  ( x  -h  z )  e.  ( ( A  +H  C
)  i^i  ( B  +H  D ) ) )

Proof of Theorem 5oalem2
StepHypRef Expression
1 5oalem2.1 . . . . 5  |-  A  e.  SH
2 5oalem2.3 . . . . 5  |-  C  e.  SH
31, 2shsvsi 28226 . . . 4  |-  ( ( x  e.  A  /\  z  e.  C )  ->  ( x  -h  z
)  e.  ( A  +H  C ) )
43ad2ant2r 783 . . 3  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  ( z  e.  C  /\  w  e.  D ) )  -> 
( x  -h  z
)  e.  ( A  +H  C ) )
54adantr 481 . 2  |-  ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( x  +h  y )  =  ( z  +h  w ) )  ->  ( x  -h  z )  e.  ( A  +H  C ) )
6 5oalem2.4 . . . . . . . 8  |-  D  e.  SH
7 5oalem2.2 . . . . . . . 8  |-  B  e.  SH
86, 7shsvsi 28226 . . . . . . 7  |-  ( ( w  e.  D  /\  y  e.  B )  ->  ( w  -h  y
)  e.  ( D  +H  B ) )
98ancoms 469 . . . . . 6  |-  ( ( y  e.  B  /\  w  e.  D )  ->  ( w  -h  y
)  e.  ( D  +H  B ) )
107, 6shscomi 28222 . . . . . 6  |-  ( B  +H  D )  =  ( D  +H  B
)
119, 10syl6eleqr 2712 . . . . 5  |-  ( ( y  e.  B  /\  w  e.  D )  ->  ( w  -h  y
)  e.  ( B  +H  D ) )
1211ad2ant2l 782 . . . 4  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  ( z  e.  C  /\  w  e.  D ) )  -> 
( w  -h  y
)  e.  ( B  +H  D ) )
1312adantr 481 . . 3  |-  ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( x  +h  y )  =  ( z  +h  w ) )  ->  ( w  -h  y )  e.  ( B  +H  D ) )
141sheli 28071 . . . . . 6  |-  ( x  e.  A  ->  x  e.  ~H )
157sheli 28071 . . . . . 6  |-  ( y  e.  B  ->  y  e.  ~H )
1614, 15anim12i 590 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( x  e.  ~H  /\  y  e.  ~H )
)
172sheli 28071 . . . . . 6  |-  ( z  e.  C  ->  z  e.  ~H )
186sheli 28071 . . . . . 6  |-  ( w  e.  D  ->  w  e.  ~H )
1917, 18anim12i 590 . . . . 5  |-  ( ( z  e.  C  /\  w  e.  D )  ->  ( z  e.  ~H  /\  w  e.  ~H )
)
2016, 19anim12i 590 . . . 4  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  ( z  e.  C  /\  w  e.  D ) )  -> 
( ( x  e. 
~H  /\  y  e.  ~H )  /\  (
z  e.  ~H  /\  w  e.  ~H )
) )
21 oveq1 6657 . . . . . . 7  |-  ( ( x  +h  y )  =  ( z  +h  w )  ->  (
( x  +h  y
)  -h  ( z  +h  y ) )  =  ( ( z  +h  w )  -h  ( z  +h  y
) ) )
2221adantl 482 . . . . . 6  |-  ( ( ( ( x  e. 
~H  /\  y  e.  ~H )  /\  (
z  e.  ~H  /\  w  e.  ~H )
)  /\  ( x  +h  y )  =  ( z  +h  w ) )  ->  ( (
x  +h  y )  -h  ( z  +h  y ) )  =  ( ( z  +h  w )  -h  (
z  +h  y ) ) )
23 simpr 477 . . . . . . . . . . . 12  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  y  e.  ~H )
2423anim2i 593 . . . . . . . . . . 11  |-  ( ( z  e.  ~H  /\  ( x  e.  ~H  /\  y  e.  ~H )
)  ->  ( z  e.  ~H  /\  y  e. 
~H ) )
2524ancoms 469 . . . . . . . . . 10  |-  ( ( ( x  e.  ~H  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( z  e. 
~H  /\  y  e.  ~H ) )
26 hvsub4 27894 . . . . . . . . . 10  |-  ( ( ( x  e.  ~H  /\  y  e.  ~H )  /\  ( z  e.  ~H  /\  y  e.  ~H )
)  ->  ( (
x  +h  y )  -h  ( z  +h  y ) )  =  ( ( x  -h  z )  +h  (
y  -h  y ) ) )
2725, 26syldan 487 . . . . . . . . 9  |-  ( ( ( x  e.  ~H  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( x  +h  y )  -h  ( z  +h  y
) )  =  ( ( x  -h  z
)  +h  ( y  -h  y ) ) )
28 hvsubid 27883 . . . . . . . . . . 11  |-  ( y  e.  ~H  ->  (
y  -h  y )  =  0h )
2928oveq2d 6666 . . . . . . . . . 10  |-  ( y  e.  ~H  ->  (
( x  -h  z
)  +h  ( y  -h  y ) )  =  ( ( x  -h  z )  +h 
0h ) )
3029ad2antlr 763 . . . . . . . . 9  |-  ( ( ( x  e.  ~H  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( x  -h  z )  +h  ( y  -h  y
) )  =  ( ( x  -h  z
)  +h  0h )
)
31 hvsubcl 27874 . . . . . . . . . . 11  |-  ( ( x  e.  ~H  /\  z  e.  ~H )  ->  ( x  -h  z
)  e.  ~H )
32 ax-hvaddid 27861 . . . . . . . . . . 11  |-  ( ( x  -h  z )  e.  ~H  ->  (
( x  -h  z
)  +h  0h )  =  ( x  -h  z ) )
3331, 32syl 17 . . . . . . . . . 10  |-  ( ( x  e.  ~H  /\  z  e.  ~H )  ->  ( ( x  -h  z )  +h  0h )  =  ( x  -h  z ) )
3433adantlr 751 . . . . . . . . 9  |-  ( ( ( x  e.  ~H  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( x  -h  z )  +h 
0h )  =  ( x  -h  z ) )
3527, 30, 343eqtrd 2660 . . . . . . . 8  |-  ( ( ( x  e.  ~H  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( x  +h  y )  -h  ( z  +h  y
) )  =  ( x  -h  z ) )
3635adantrr 753 . . . . . . 7  |-  ( ( ( x  e.  ~H  /\  y  e.  ~H )  /\  ( z  e.  ~H  /\  w  e.  ~H )
)  ->  ( (
x  +h  y )  -h  ( z  +h  y ) )  =  ( x  -h  z
) )
3736adantr 481 . . . . . 6  |-  ( ( ( ( x  e. 
~H  /\  y  e.  ~H )  /\  (
z  e.  ~H  /\  w  e.  ~H )
)  /\  ( x  +h  y )  =  ( z  +h  w ) )  ->  ( (
x  +h  y )  -h  ( z  +h  y ) )  =  ( x  -h  z
) )
38 simpr 477 . . . . . . . . . 10  |-  ( ( y  e.  ~H  /\  ( z  e.  ~H  /\  w  e.  ~H )
)  ->  ( z  e.  ~H  /\  w  e. 
~H ) )
39 simpl 473 . . . . . . . . . . . 12  |-  ( ( z  e.  ~H  /\  w  e.  ~H )  ->  z  e.  ~H )
4039anim1i 592 . . . . . . . . . . 11  |-  ( ( ( z  e.  ~H  /\  w  e.  ~H )  /\  y  e.  ~H )  ->  ( z  e. 
~H  /\  y  e.  ~H ) )
4140ancoms 469 . . . . . . . . . 10  |-  ( ( y  e.  ~H  /\  ( z  e.  ~H  /\  w  e.  ~H )
)  ->  ( z  e.  ~H  /\  y  e. 
~H ) )
42 hvsub4 27894 . . . . . . . . . 10  |-  ( ( ( z  e.  ~H  /\  w  e.  ~H )  /\  ( z  e.  ~H  /\  y  e.  ~H )
)  ->  ( (
z  +h  w )  -h  ( z  +h  y ) )  =  ( ( z  -h  z )  +h  (
w  -h  y ) ) )
4338, 41, 42syl2anc 693 . . . . . . . . 9  |-  ( ( y  e.  ~H  /\  ( z  e.  ~H  /\  w  e.  ~H )
)  ->  ( (
z  +h  w )  -h  ( z  +h  y ) )  =  ( ( z  -h  z )  +h  (
w  -h  y ) ) )
44 hvsubid 27883 . . . . . . . . . . 11  |-  ( z  e.  ~H  ->  (
z  -h  z )  =  0h )
4544oveq1d 6665 . . . . . . . . . 10  |-  ( z  e.  ~H  ->  (
( z  -h  z
)  +h  ( w  -h  y ) )  =  ( 0h  +h  ( w  -h  y
) ) )
4645ad2antrl 764 . . . . . . . . 9  |-  ( ( y  e.  ~H  /\  ( z  e.  ~H  /\  w  e.  ~H )
)  ->  ( (
z  -h  z )  +h  ( w  -h  y ) )  =  ( 0h  +h  (
w  -h  y ) ) )
47 hvsubcl 27874 . . . . . . . . . . . 12  |-  ( ( w  e.  ~H  /\  y  e.  ~H )  ->  ( w  -h  y
)  e.  ~H )
48 hvaddid2 27880 . . . . . . . . . . . 12  |-  ( ( w  -h  y )  e.  ~H  ->  ( 0h  +h  ( w  -h  y ) )  =  ( w  -h  y
) )
4947, 48syl 17 . . . . . . . . . . 11  |-  ( ( w  e.  ~H  /\  y  e.  ~H )  ->  ( 0h  +h  (
w  -h  y ) )  =  ( w  -h  y ) )
5049ancoms 469 . . . . . . . . . 10  |-  ( ( y  e.  ~H  /\  w  e.  ~H )  ->  ( 0h  +h  (
w  -h  y ) )  =  ( w  -h  y ) )
5150adantrl 752 . . . . . . . . 9  |-  ( ( y  e.  ~H  /\  ( z  e.  ~H  /\  w  e.  ~H )
)  ->  ( 0h  +h  ( w  -h  y
) )  =  ( w  -h  y ) )
5243, 46, 513eqtrd 2660 . . . . . . . 8  |-  ( ( y  e.  ~H  /\  ( z  e.  ~H  /\  w  e.  ~H )
)  ->  ( (
z  +h  w )  -h  ( z  +h  y ) )  =  ( w  -h  y
) )
5352adantll 750 . . . . . . 7  |-  ( ( ( x  e.  ~H  /\  y  e.  ~H )  /\  ( z  e.  ~H  /\  w  e.  ~H )
)  ->  ( (
z  +h  w )  -h  ( z  +h  y ) )  =  ( w  -h  y
) )
5453adantr 481 . . . . . 6  |-  ( ( ( ( x  e. 
~H  /\  y  e.  ~H )  /\  (
z  e.  ~H  /\  w  e.  ~H )
)  /\  ( x  +h  y )  =  ( z  +h  w ) )  ->  ( (
z  +h  w )  -h  ( z  +h  y ) )  =  ( w  -h  y
) )
5522, 37, 543eqtr3d 2664 . . . . 5  |-  ( ( ( ( x  e. 
~H  /\  y  e.  ~H )  /\  (
z  e.  ~H  /\  w  e.  ~H )
)  /\  ( x  +h  y )  =  ( z  +h  w ) )  ->  ( x  -h  z )  =  ( w  -h  y ) )
5655eleq1d 2686 . . . 4  |-  ( ( ( ( x  e. 
~H  /\  y  e.  ~H )  /\  (
z  e.  ~H  /\  w  e.  ~H )
)  /\  ( x  +h  y )  =  ( z  +h  w ) )  ->  ( (
x  -h  z )  e.  ( B  +H  D )  <->  ( w  -h  y )  e.  ( B  +H  D ) ) )
5720, 56sylan 488 . . 3  |-  ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( x  +h  y )  =  ( z  +h  w ) )  ->  ( (
x  -h  z )  e.  ( B  +H  D )  <->  ( w  -h  y )  e.  ( B  +H  D ) ) )
5813, 57mpbird 247 . 2  |-  ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( x  +h  y )  =  ( z  +h  w ) )  ->  ( x  -h  z )  e.  ( B  +H  D ) )
595, 58elind 3798 1  |-  ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( x  +h  y )  =  ( z  +h  w ) )  ->  ( x  -h  z )  e.  ( ( A  +H  C
)  i^i  ( B  +H  D ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    i^i cin 3573  (class class class)co 6650   ~Hchil 27776    +h cva 27777   0hc0v 27781    -h cmv 27782   SHcsh 27785    +H cph 27788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-hilex 27856  ax-hfvadd 27857  ax-hvcom 27858  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvdistr1 27865  ax-hvdistr2 27866  ax-hvmul0 27867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sub 10268  df-neg 10269  df-nn 11021  df-grpo 27347  df-ablo 27399  df-hvsub 27828  df-hlim 27829  df-sh 28064  df-ch 28078  df-shs 28167
This theorem is referenced by:  5oalem3  28515  5oalem4  28516
  Copyright terms: Public domain W3C validator