HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvmulcom Structured version   Visualization version   Unicode version

Theorem hvmulcom 27900
Description: Scalar multiplication commutative law. (Contributed by NM, 19-May-2005.) (New usage is discouraged.)
Assertion
Ref Expression
hvmulcom  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  ~H )  ->  ( A  .h  ( B  .h  C ) )  =  ( B  .h  ( A  .h  C )
) )

Proof of Theorem hvmulcom
StepHypRef Expression
1 mulcom 10022 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( B  x.  A ) )
21oveq1d 6665 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  .h  C
)  =  ( ( B  x.  A )  .h  C ) )
323adant3 1081 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  ~H )  ->  (
( A  x.  B
)  .h  C )  =  ( ( B  x.  A )  .h  C ) )
4 ax-hvmulass 27864 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  ~H )  ->  (
( A  x.  B
)  .h  C )  =  ( A  .h  ( B  .h  C
) ) )
5 ax-hvmulass 27864 . . 3  |-  ( ( B  e.  CC  /\  A  e.  CC  /\  C  e.  ~H )  ->  (
( B  x.  A
)  .h  C )  =  ( B  .h  ( A  .h  C
) ) )
653com12 1269 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  ~H )  ->  (
( B  x.  A
)  .h  C )  =  ( B  .h  ( A  .h  C
) ) )
73, 4, 63eqtr3d 2664 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  ~H )  ->  ( A  .h  ( B  .h  C ) )  =  ( B  .h  ( A  .h  C )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990  (class class class)co 6650   CCcc 9934    x. cmul 9941   ~Hchil 27776    .h csm 27778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-mulcom 10000  ax-hvmulass 27864
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by:  hvmulcomi  27904  hvsubdistr1  27906  lnopmi  28859
  Copyright terms: Public domain W3C validator