| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > lnopmi | Structured version Visualization version Unicode version | ||
| Description: The scalar product of a linear operator is a linear operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lnopm.1 |
|
| Ref | Expression |
|---|---|
| lnopmi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnopm.1 |
. . . 4
| |
| 2 | 1 | lnopfi 28828 |
. . 3
|
| 3 | homulcl 28618 |
. . 3
| |
| 4 | 2, 3 | mpan2 707 |
. 2
|
| 5 | hvmulcl 27870 |
. . . . . . . 8
| |
| 6 | hvaddcl 27869 |
. . . . . . . 8
| |
| 7 | 5, 6 | sylan 488 |
. . . . . . 7
|
| 8 | homval 28600 |
. . . . . . . 8
| |
| 9 | 2, 8 | mp3an2 1412 |
. . . . . . 7
|
| 10 | 7, 9 | sylan2 491 |
. . . . . 6
|
| 11 | id 22 |
. . . . . . . . 9
| |
| 12 | 2 | ffvelrni 6358 |
. . . . . . . . . 10
|
| 13 | hvmulcl 27870 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | sylan2 491 |
. . . . . . . . 9
|
| 15 | 2 | ffvelrni 6358 |
. . . . . . . . 9
|
| 16 | ax-hvdistr1 27865 |
. . . . . . . . 9
| |
| 17 | 11, 14, 15, 16 | syl3an 1368 |
. . . . . . . 8
|
| 18 | 17 | 3expb 1266 |
. . . . . . 7
|
| 19 | 1 | lnopli 28827 |
. . . . . . . . . 10
|
| 20 | 19 | 3expa 1265 |
. . . . . . . . 9
|
| 21 | 20 | oveq2d 6666 |
. . . . . . . 8
|
| 22 | 21 | adantl 482 |
. . . . . . 7
|
| 23 | homval 28600 |
. . . . . . . . . . . . 13
| |
| 24 | 2, 23 | mp3an2 1412 |
. . . . . . . . . . . 12
|
| 25 | 24 | adantrl 752 |
. . . . . . . . . . 11
|
| 26 | 25 | oveq2d 6666 |
. . . . . . . . . 10
|
| 27 | hvmulcom 27900 |
. . . . . . . . . . . 12
| |
| 28 | 12, 27 | syl3an3 1361 |
. . . . . . . . . . 11
|
| 29 | 28 | 3expb 1266 |
. . . . . . . . . 10
|
| 30 | 26, 29 | eqtr4d 2659 |
. . . . . . . . 9
|
| 31 | homval 28600 |
. . . . . . . . . 10
| |
| 32 | 2, 31 | mp3an2 1412 |
. . . . . . . . 9
|
| 33 | 30, 32 | oveqan12d 6669 |
. . . . . . . 8
|
| 34 | 33 | anandis 873 |
. . . . . . 7
|
| 35 | 18, 22, 34 | 3eqtr4rd 2667 |
. . . . . 6
|
| 36 | 10, 35 | eqtr4d 2659 |
. . . . 5
|
| 37 | 36 | exp32 631 |
. . . 4
|
| 38 | 37 | ralrimdv 2968 |
. . 3
|
| 39 | 38 | ralrimivv 2970 |
. 2
|
| 40 | ellnop 28717 |
. 2
| |
| 41 | 4, 39, 40 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-mulcom 10000 ax-hilex 27856 ax-hfvadd 27857 ax-hfvmul 27862 ax-hvmulass 27864 ax-hvdistr1 27865 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 df-homul 28590 df-lnop 28700 |
| This theorem is referenced by: lnophdi 28861 bdophmi 28891 |
| Copyright terms: Public domain | W3C validator |