![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > idn3 | Structured version Visualization version Unicode version |
Description: Virtual deduction identity rule for three virtual hypotheses. (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
idn3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | a1i 11 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | dfvd3ir 38809 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 df-vd3 38806 |
This theorem is referenced by: suctrALT2VD 39071 en3lplem2VD 39079 exbirVD 39088 exbiriVD 39089 rspsbc2VD 39090 tratrbVD 39097 ssralv2VD 39102 imbi12VD 39109 imbi13VD 39110 truniALTVD 39114 trintALTVD 39116 onfrALTlem2VD 39125 |
Copyright terms: Public domain | W3C validator |