Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idn3 Structured version   Visualization version   Unicode version

Theorem idn3 38840
Description: Virtual deduction identity rule for three virtual hypotheses. (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
idn3  |-  (. ph ,. ps ,. ch  ->.  ch ).

Proof of Theorem idn3
StepHypRef Expression
1 idd 24 . . 3  |-  ( ps 
->  ( ch  ->  ch ) )
21a1i 11 . 2  |-  ( ph  ->  ( ps  ->  ( ch  ->  ch ) ) )
32dfvd3ir 38809 1  |-  (. ph ,. ps ,. ch  ->.  ch ).
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   (.wvd3 38803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386  df-3an 1039  df-vd3 38806
This theorem is referenced by:  suctrALT2VD  39071  en3lplem2VD  39079  exbirVD  39088  exbiriVD  39089  rspsbc2VD  39090  tratrbVD  39097  ssralv2VD  39102  imbi12VD  39109  imbi13VD  39110  truniALTVD  39114  trintALTVD  39116  onfrALTlem2VD  39125
  Copyright terms: Public domain W3C validator