Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALTlem2VD Structured version   Visualization version   Unicode version

Theorem onfrALTlem2VD 39125
Description: Virtual deduction proof of onfrALTlem2 38761. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem2 38761 is onfrALTlem2VD 39125 without virtual deductions and was automatically derived from onfrALTlem2VD 39125.
1::  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) ) ).
2:1:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  ( a  i^i  y ) ).
3:2:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  a ).
4::  |-  (. ( a  C_  On  /\  a  =/=  (/) )  ->.  ( a  C_  On  /\  a  =/=  (/) ) ).
5::  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ).
6:5:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  x  e.  a ).
7:4:  |-  (. ( a  C_  On  /\  a  =/=  (/) )  ->.  a  C_  On ).
8:6,7:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  x  e.  On ).
9:8:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  Ord  x ).
10:9:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  Tr  x ).
11:1:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  y  e.  ( a  i^i  x ) ).
12:11:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  y  e.  x ).
13:2:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  y ).
14:10,12,13:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  x ).
15:3,14:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  ( a  i^i  x ) ).
16:13,15:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  ( ( a  i^i  x )  i^i  y ) ).
17:16:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y  )  =  (/) )  ->.  ( z  e.  ( a  i^i  y )  ->  z  e.  ( ( a  i^i  x )  i^i  y ) ) ).
18:17:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y  )  =  (/) )  ->.  A. z ( z  e.  ( a  i^i  y )  ->  z  e.  ( ( a  i^i  x )  i^i  y ) ) ).
19:18:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y  )  =  (/) )  ->.  ( a  i^i  y )  C_  ( ( a  i^i  x )  i^i  y ) ).
20::  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y  )  =  (/) )  ->.  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) ).
21:20:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y  )  =  (/) )  ->.  ( ( a  i^i  x )  i^i  y )  =  (/) ).
22:19,21:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y  )  =  (/) )  ->.  ( a  i^i  y )  =  (/) ).
23:20:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y  )  =  (/) )  ->.  y  e.  ( a  i^i  x ) ).
24:23:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y  )  =  (/) )  ->.  y  e.  a ).
25:22,24:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y  )  =  (/) )  ->.  ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ).
26:25:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  ->  ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ) ).
27:26:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  A. y ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x  )  i^i  y )  =  (/) )  ->  ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ) ).
28:27:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  ( E. y ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x  )  i^i  y )  =  (/) )  ->  E. y ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ) ).
29::  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  E. y  e.  ( a  i^i  x ) ( ( a  i^i  x )  i^i  y  )  =  (/) ).
30:29:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  E. y ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) ).
31:28,30:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  E. y ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ).
qed:31:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  E. y  e.  a ( a  i^i  y )  =  (/) ).
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALTlem2VD  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  E. y  e.  a  ( a  i^i  y )  =  (/) ).
Distinct variable groups:    y, a    x, y

Proof of Theorem onfrALTlem2VD
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 idn3 38840 . . . . . . . . . . . . . 14  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  ( ( y  e.  ( a  i^i  x )  /\  (
( a  i^i  x
)  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y
) ) ).
2 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->  z  e.  ( a  i^i  y
) )
31, 2e3 38964 . . . . . . . . . . . . 13  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  ( a  i^i  y ) ).
4 inss2 3834 . . . . . . . . . . . . . 14  |-  ( a  i^i  y )  C_  y
54sseli 3599 . . . . . . . . . . . . 13  |-  ( z  e.  ( a  i^i  y )  ->  z  e.  y )
63, 5e3 38964 . . . . . . . . . . . 12  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  y ).
7 inss1 3833 . . . . . . . . . . . . . . 15  |-  ( a  i^i  y )  C_  a
87sseli 3599 . . . . . . . . . . . . . 14  |-  ( z  e.  ( a  i^i  y )  ->  z  e.  a )
93, 8e3 38964 . . . . . . . . . . . . 13  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  a ).
10 idn2 38838 . . . . . . . . . . . . . . . . . 18  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  ( x  e.  a  /\  -.  (
a  i^i  x )  =  (/) ) ).
11 simpl 473 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->  x  e.  a )
1210, 11e2 38856 . . . . . . . . . . . . . . . . 17  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  x  e.  a ).
13 idn1 38790 . . . . . . . . . . . . . . . . . 18  |-  (. (
a  C_  On  /\  a  =/=  (/) )  ->.  ( a  C_  On  /\  a  =/=  (/) ) ).
14 simpl 473 . . . . . . . . . . . . . . . . . 18  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  a  C_  On )
1513, 14e1a 38852 . . . . . . . . . . . . . . . . 17  |-  (. (
a  C_  On  /\  a  =/=  (/) )  ->.  a  C_  On ).
16 ssel 3597 . . . . . . . . . . . . . . . . . 18  |-  ( a 
C_  On  ->  ( x  e.  a  ->  x  e.  On ) )
1716com12 32 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  a  ->  (
a  C_  On  ->  x  e.  On ) )
1812, 15, 17e21 38957 . . . . . . . . . . . . . . . 16  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  x  e.  On ).
19 eloni 5733 . . . . . . . . . . . . . . . 16  |-  ( x  e.  On  ->  Ord  x )
2018, 19e2 38856 . . . . . . . . . . . . . . 15  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  Ord  x ).
21 ordtr 5737 . . . . . . . . . . . . . . 15  |-  ( Ord  x  ->  Tr  x
)
2220, 21e2 38856 . . . . . . . . . . . . . 14  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  Tr  x ).
23 simpll 790 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->  y  e.  ( a  i^i  x
) )
241, 23e3 38964 . . . . . . . . . . . . . . 15  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  y  e.  ( a  i^i  x ) ).
25 inss2 3834 . . . . . . . . . . . . . . . 16  |-  ( a  i^i  x )  C_  x
2625sseli 3599 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( a  i^i  x )  ->  y  e.  x )
2724, 26e3 38964 . . . . . . . . . . . . . 14  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  y  e.  x ).
28 trel 4759 . . . . . . . . . . . . . . 15  |-  ( Tr  x  ->  ( (
z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
2928expcomd 454 . . . . . . . . . . . . . 14  |-  ( Tr  x  ->  ( y  e.  x  ->  ( z  e.  y  ->  z  e.  x ) ) )
3022, 27, 6, 29e233 38992 . . . . . . . . . . . . 13  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  x ).
31 elin 3796 . . . . . . . . . . . . . 14  |-  ( z  e.  ( a  i^i  x )  <->  ( z  e.  a  /\  z  e.  x ) )
3231simplbi2 655 . . . . . . . . . . . . 13  |-  ( z  e.  a  ->  (
z  e.  x  -> 
z  e.  ( a  i^i  x ) ) )
339, 30, 32e33 38961 . . . . . . . . . . . 12  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  ( a  i^i  x ) ).
34 elin 3796 . . . . . . . . . . . . 13  |-  ( z  e.  ( ( a  i^i  x )  i^i  y )  <->  ( z  e.  ( a  i^i  x
)  /\  z  e.  y ) )
3534simplbi2com 657 . . . . . . . . . . . 12  |-  ( z  e.  y  ->  (
z  e.  ( a  i^i  x )  -> 
z  e.  ( ( a  i^i  x )  i^i  y ) ) )
366, 33, 35e33 38961 . . . . . . . . . . 11  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  ( ( a  i^i  x
)  i^i  y ) ).
3736in3an 38836 . . . . . . . . . 10  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) 
->.  ( z  e.  ( a  i^i  y )  ->  z  e.  ( ( a  i^i  x
)  i^i  y )
) ).
3837gen31 38846 . . . . . . . . 9  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) 
->.  A. z ( z  e.  ( a  i^i  y )  ->  z  e.  ( ( a  i^i  x )  i^i  y
) ) ).
39 dfss2 3591 . . . . . . . . . 10  |-  ( ( a  i^i  y ) 
C_  ( ( a  i^i  x )  i^i  y )  <->  A. z
( z  e.  ( a  i^i  y )  ->  z  e.  ( ( a  i^i  x
)  i^i  y )
) )
4039biimpri 218 . . . . . . . . 9  |-  ( A. z ( z  e.  ( a  i^i  y
)  ->  z  e.  ( ( a  i^i  x )  i^i  y
) )  ->  (
a  i^i  y )  C_  ( ( a  i^i  x )  i^i  y
) )
4138, 40e3 38964 . . . . . . . 8  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) 
->.  ( a  i^i  y
)  C_  ( (
a  i^i  x )  i^i  y ) ).
42 idn3 38840 . . . . . . . . 9  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) 
->.  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) ).
43 simpr 477 . . . . . . . . 9  |-  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y
)  =  (/) )  -> 
( ( a  i^i  x )  i^i  y
)  =  (/) )
4442, 43e3 38964 . . . . . . . 8  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) 
->.  ( ( a  i^i  x )  i^i  y
)  =  (/) ).
45 sseq0 3975 . . . . . . . . 9  |-  ( ( ( a  i^i  y
)  C_  ( (
a  i^i  x )  i^i  y )  /\  (
( a  i^i  x
)  i^i  y )  =  (/) )  ->  (
a  i^i  y )  =  (/) )
4645ex 450 . . . . . . . 8  |-  ( ( a  i^i  y ) 
C_  ( ( a  i^i  x )  i^i  y )  ->  (
( ( a  i^i  x )  i^i  y
)  =  (/)  ->  (
a  i^i  y )  =  (/) ) )
4741, 44, 46e33 38961 . . . . . . 7  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) 
->.  ( a  i^i  y
)  =  (/) ).
48 simpl 473 . . . . . . . . 9  |-  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y
)  =  (/) )  -> 
y  e.  ( a  i^i  x ) )
4942, 48e3 38964 . . . . . . . 8  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) 
->.  y  e.  (
a  i^i  x ) ).
50 inss1 3833 . . . . . . . . 9  |-  ( a  i^i  x )  C_  a
5150sseli 3599 . . . . . . . 8  |-  ( y  e.  ( a  i^i  x )  ->  y  e.  a )
5249, 51e3 38964 . . . . . . 7  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) 
->.  y  e.  a ).
53 pm3.21 464 . . . . . . 7  |-  ( ( a  i^i  y )  =  (/)  ->  ( y  e.  a  ->  (
y  e.  a  /\  ( a  i^i  y
)  =  (/) ) ) )
5447, 52, 53e33 38961 . . . . . 6  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) 
->.  ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ).
5554in3 38834 . . . . 5  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  ( (
y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y
)  =  (/) )  -> 
( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ) ).
5655gen21 38844 . . . 4  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  A. y
( ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) )  ->  ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ) ).
57 exim 1761 . . . 4  |-  ( A. y ( ( y  e.  ( a  i^i  x )  /\  (
( a  i^i  x
)  i^i  y )  =  (/) )  ->  (
y  e.  a  /\  ( a  i^i  y
)  =  (/) ) )  ->  ( E. y
( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  ->  E. y ( y  e.  a  /\  (
a  i^i  y )  =  (/) ) ) )
5856, 57e2 38856 . . 3  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  ( E. y ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) )  ->  E. y ( y  e.  a  /\  (
a  i^i  y )  =  (/) ) ) ).
59 onfrALTlem3VD 39123 . . . 4  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  E. y  e.  ( a  i^i  x
) ( ( a  i^i  x )  i^i  y )  =  (/) ).
60 df-rex 2918 . . . . 5  |-  ( E. y  e.  ( a  i^i  x ) ( ( a  i^i  x
)  i^i  y )  =  (/)  <->  E. y ( y  e.  ( a  i^i  x )  /\  (
( a  i^i  x
)  i^i  y )  =  (/) ) )
6160biimpi 206 . . . 4  |-  ( E. y  e.  ( a  i^i  x ) ( ( a  i^i  x
)  i^i  y )  =  (/)  ->  E. y
( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) )
6259, 61e2 38856 . . 3  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  E. y
( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) ).
63 id 22 . . 3  |-  ( ( E. y ( y  e.  ( a  i^i  x )  /\  (
( a  i^i  x
)  i^i  y )  =  (/) )  ->  E. y
( y  e.  a  /\  ( a  i^i  y )  =  (/) ) )  ->  ( E. y ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) )  ->  E. y ( y  e.  a  /\  (
a  i^i  y )  =  (/) ) ) )
6458, 62, 63e22 38896 . 2  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  E. y
( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ).
65 df-rex 2918 . . 3  |-  ( E. y  e.  a  ( a  i^i  y )  =  (/)  <->  E. y ( y  e.  a  /\  (
a  i^i  y )  =  (/) ) )
6665biimpri 218 . 2  |-  ( E. y ( y  e.  a  /\  ( a  i^i  y )  =  (/) )  ->  E. y  e.  a  ( a  i^i  y )  =  (/) )
6764, 66e2 38856 1  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  E. y  e.  a  ( a  i^i  y )  =  (/) ).
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   E.wrex 2913    i^i cin 3573    C_ wss 3574   (/)c0 3915   Tr wtr 4752   Ord word 5722   Oncon0 5723   (.wvd2 38793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-vd1 38786  df-vd2 38794  df-vd3 38806
This theorem is referenced by:  onfrALTVD  39127
  Copyright terms: Public domain W3C validator