Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smatrcl Structured version   Visualization version   Unicode version

Theorem smatrcl 29862
Description: Closure of the rectangular submatrix. (Contributed by Thierry Arnoux, 19-Aug-2020.)
Hypotheses
Ref Expression
smat.s  |-  S  =  ( K (subMat1 `  A
) L )
smat.m  |-  ( ph  ->  M  e.  NN )
smat.n  |-  ( ph  ->  N  e.  NN )
smat.k  |-  ( ph  ->  K  e.  ( 1 ... M ) )
smat.l  |-  ( ph  ->  L  e.  ( 1 ... N ) )
smat.a  |-  ( ph  ->  A  e.  ( B  ^m  ( ( 1 ... M )  X.  ( 1 ... N
) ) ) )
Assertion
Ref Expression
smatrcl  |-  ( ph  ->  S  e.  ( B  ^m  ( ( 1 ... ( M  - 
1 ) )  X.  ( 1 ... ( N  -  1 ) ) ) ) )

Proof of Theorem smatrcl
Dummy variables  i 
j  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smat.a . . . . . . . 8  |-  ( ph  ->  A  e.  ( B  ^m  ( ( 1 ... M )  X.  ( 1 ... N
) ) ) )
2 elmapi 7879 . . . . . . . 8  |-  ( A  e.  ( B  ^m  ( ( 1 ... M )  X.  (
1 ... N ) ) )  ->  A :
( ( 1 ... M )  X.  (
1 ... N ) ) --> B )
3 ffun 6048 . . . . . . . 8  |-  ( A : ( ( 1 ... M )  X.  ( 1 ... N
) ) --> B  ->  Fun  A )
41, 2, 33syl 18 . . . . . . 7  |-  ( ph  ->  Fun  A )
5 eqid 2622 . . . . . . . . 9  |-  ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  <  K , 
i ,  ( i  +  1 ) ) ,  if ( j  <  L ,  j ,  ( j  +  1 ) ) >.
)  =  ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  <  K , 
i ,  ( i  +  1 ) ) ,  if ( j  <  L ,  j ,  ( j  +  1 ) ) >.
)
65mpt2fun 6762 . . . . . . . 8  |-  Fun  (
i  e.  NN , 
j  e.  NN  |->  <. if ( i  <  K ,  i ,  ( i  +  1 ) ) ,  if ( j  <  L , 
j ,  ( j  +  1 ) )
>. )
76a1i 11 . . . . . . 7  |-  ( ph  ->  Fun  ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  <  K ,  i ,  ( i  +  1 ) ) ,  if ( j  < 
L ,  j ,  ( j  +  1 ) ) >. )
)
8 funco 5928 . . . . . . 7  |-  ( ( Fun  A  /\  Fun  ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  < 
K ,  i ,  ( i  +  1 ) ) ,  if ( j  <  L ,  j ,  ( j  +  1 ) ) >. ) )  ->  Fun  ( A  o.  (
i  e.  NN , 
j  e.  NN  |->  <. if ( i  <  K ,  i ,  ( i  +  1 ) ) ,  if ( j  <  L , 
j ,  ( j  +  1 ) )
>. ) ) )
94, 7, 8syl2anc 693 . . . . . 6  |-  ( ph  ->  Fun  ( A  o.  ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  < 
K ,  i ,  ( i  +  1 ) ) ,  if ( j  <  L ,  j ,  ( j  +  1 ) ) >. ) ) )
10 smat.s . . . . . . . 8  |-  S  =  ( K (subMat1 `  A
) L )
11 fz1ssnn 12372 . . . . . . . . . 10  |-  ( 1 ... M )  C_  NN
12 smat.k . . . . . . . . . 10  |-  ( ph  ->  K  e.  ( 1 ... M ) )
1311, 12sseldi 3601 . . . . . . . . 9  |-  ( ph  ->  K  e.  NN )
14 fz1ssnn 12372 . . . . . . . . . 10  |-  ( 1 ... N )  C_  NN
15 smat.l . . . . . . . . . 10  |-  ( ph  ->  L  e.  ( 1 ... N ) )
1614, 15sseldi 3601 . . . . . . . . 9  |-  ( ph  ->  L  e.  NN )
17 smatfval 29861 . . . . . . . . 9  |-  ( ( K  e.  NN  /\  L  e.  NN  /\  A  e.  ( B  ^m  (
( 1 ... M
)  X.  ( 1 ... N ) ) ) )  ->  ( K (subMat1 `  A ) L )  =  ( A  o.  ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  <  K , 
i ,  ( i  +  1 ) ) ,  if ( j  <  L ,  j ,  ( j  +  1 ) ) >.
) ) )
1813, 16, 1, 17syl3anc 1326 . . . . . . . 8  |-  ( ph  ->  ( K (subMat1 `  A
) L )  =  ( A  o.  (
i  e.  NN , 
j  e.  NN  |->  <. if ( i  <  K ,  i ,  ( i  +  1 ) ) ,  if ( j  <  L , 
j ,  ( j  +  1 ) )
>. ) ) )
1910, 18syl5eq 2668 . . . . . . 7  |-  ( ph  ->  S  =  ( A  o.  ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  <  K ,  i ,  ( i  +  1 ) ) ,  if ( j  < 
L ,  j ,  ( j  +  1 ) ) >. )
) )
2019funeqd 5910 . . . . . 6  |-  ( ph  ->  ( Fun  S  <->  Fun  ( A  o.  ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  <  K ,  i ,  ( i  +  1 ) ) ,  if ( j  < 
L ,  j ,  ( j  +  1 ) ) >. )
) ) )
219, 20mpbird 247 . . . . 5  |-  ( ph  ->  Fun  S )
22 fdmrn 6064 . . . . 5  |-  ( Fun 
S  <->  S : dom  S --> ran  S )
2321, 22sylib 208 . . . 4  |-  ( ph  ->  S : dom  S --> ran  S )
2419dmeqd 5326 . . . . . 6  |-  ( ph  ->  dom  S  =  dom  ( A  o.  (
i  e.  NN , 
j  e.  NN  |->  <. if ( i  <  K ,  i ,  ( i  +  1 ) ) ,  if ( j  <  L , 
j ,  ( j  +  1 ) )
>. ) ) )
25 dmco 5643 . . . . . . 7  |-  dom  ( A  o.  ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  <  K ,  i ,  ( i  +  1 ) ) ,  if ( j  < 
L ,  j ,  ( j  +  1 ) ) >. )
)  =  ( `' ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  < 
K ,  i ,  ( i  +  1 ) ) ,  if ( j  <  L ,  j ,  ( j  +  1 ) ) >. ) " dom  A )
26 fdm 6051 . . . . . . . . . . . 12  |-  ( A : ( ( 1 ... M )  X.  ( 1 ... N
) ) --> B  ->  dom  A  =  ( ( 1 ... M )  X.  ( 1 ... N ) ) )
271, 2, 263syl 18 . . . . . . . . . . 11  |-  ( ph  ->  dom  A  =  ( ( 1 ... M
)  X.  ( 1 ... N ) ) )
2827imaeq2d 5466 . . . . . . . . . 10  |-  ( ph  ->  ( `' ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  <  K , 
i ,  ( i  +  1 ) ) ,  if ( j  <  L ,  j ,  ( j  +  1 ) ) >.
) " dom  A
)  =  ( `' ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  < 
K ,  i ,  ( i  +  1 ) ) ,  if ( j  <  L ,  j ,  ( j  +  1 ) ) >. ) " (
( 1 ... M
)  X.  ( 1 ... N ) ) ) )
2928eleq2d 2687 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( `' ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  <  K ,  i ,  ( i  +  1 ) ) ,  if ( j  < 
L ,  j ,  ( j  +  1 ) ) >. ) " dom  A )  <->  x  e.  ( `' ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  <  K ,  i ,  ( i  +  1 ) ) ,  if ( j  < 
L ,  j ,  ( j  +  1 ) ) >. ) " ( ( 1 ... M )  X.  ( 1 ... N
) ) ) ) )
30 opex 4932 . . . . . . . . . . . 12  |-  <. if ( i  <  K , 
i ,  ( i  +  1 ) ) ,  if ( j  <  L ,  j ,  ( j  +  1 ) ) >.  e.  _V
315, 30fnmpt2i 7239 . . . . . . . . . . 11  |-  ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  <  K , 
i ,  ( i  +  1 ) ) ,  if ( j  <  L ,  j ,  ( j  +  1 ) ) >.
)  Fn  ( NN 
X.  NN )
32 elpreima 6337 . . . . . . . . . . 11  |-  ( ( i  e.  NN , 
j  e.  NN  |->  <. if ( i  <  K ,  i ,  ( i  +  1 ) ) ,  if ( j  <  L , 
j ,  ( j  +  1 ) )
>. )  Fn  ( NN  X.  NN )  -> 
( x  e.  ( `' ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  <  K ,  i ,  ( i  +  1 ) ) ,  if ( j  < 
L ,  j ,  ( j  +  1 ) ) >. ) " ( ( 1 ... M )  X.  ( 1 ... N
) ) )  <->  ( x  e.  ( NN  X.  NN )  /\  ( ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  <  K , 
i ,  ( i  +  1 ) ) ,  if ( j  <  L ,  j ,  ( j  +  1 ) ) >.
) `  x )  e.  ( ( 1 ... M )  X.  (
1 ... N ) ) ) ) )
3331, 32ax-mp 5 . . . . . . . . . 10  |-  ( x  e.  ( `' ( i  e.  NN , 
j  e.  NN  |->  <. if ( i  <  K ,  i ,  ( i  +  1 ) ) ,  if ( j  <  L , 
j ,  ( j  +  1 ) )
>. ) " ( ( 1 ... M )  X.  ( 1 ... N ) ) )  <-> 
( x  e.  ( NN  X.  NN )  /\  ( ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  <  K , 
i ,  ( i  +  1 ) ) ,  if ( j  <  L ,  j ,  ( j  +  1 ) ) >.
) `  x )  e.  ( ( 1 ... M )  X.  (
1 ... N ) ) ) )
3433a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( `' ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  <  K ,  i ,  ( i  +  1 ) ) ,  if ( j  < 
L ,  j ,  ( j  +  1 ) ) >. ) " ( ( 1 ... M )  X.  ( 1 ... N
) ) )  <->  ( x  e.  ( NN  X.  NN )  /\  ( ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  <  K , 
i ,  ( i  +  1 ) ) ,  if ( j  <  L ,  j ,  ( j  +  1 ) ) >.
) `  x )  e.  ( ( 1 ... M )  X.  (
1 ... N ) ) ) ) )
35 simplr 792 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  /\  ( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  ->  x  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >. )
3635fveq2d 6195 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  /\  ( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  ->  ( ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  <  K , 
i ,  ( i  +  1 ) ) ,  if ( j  <  L ,  j ,  ( j  +  1 ) ) >.
) `  x )  =  ( ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  <  K , 
i ,  ( i  +  1 ) ) ,  if ( j  <  L ,  j ,  ( j  +  1 ) ) >.
) `  <. ( 1st `  x ) ,  ( 2nd `  x )
>. ) )
37 df-ov 6653 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1st `  x ) ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  < 
K ,  i ,  ( i  +  1 ) ) ,  if ( j  <  L ,  j ,  ( j  +  1 ) ) >. ) ( 2nd `  x ) )  =  ( ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  <  K ,  i ,  ( i  +  1 ) ) ,  if ( j  < 
L ,  j ,  ( j  +  1 ) ) >. ) `  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
3836, 37syl6eqr 2674 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  /\  ( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  ->  ( ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  <  K , 
i ,  ( i  +  1 ) ) ,  if ( j  <  L ,  j ,  ( j  +  1 ) ) >.
) `  x )  =  ( ( 1st `  x ) ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  <  K , 
i ,  ( i  +  1 ) ) ,  if ( j  <  L ,  j ,  ( j  +  1 ) ) >.
) ( 2nd `  x
) ) )
39 breq1 4656 . . . . . . . . . . . . . . . . . . . . 21  |-  ( i  =  ( 1st `  x
)  ->  ( i  <  K  <->  ( 1st `  x
)  <  K )
)
40 id 22 . . . . . . . . . . . . . . . . . . . . 21  |-  ( i  =  ( 1st `  x
)  ->  i  =  ( 1st `  x ) )
41 oveq1 6657 . . . . . . . . . . . . . . . . . . . . 21  |-  ( i  =  ( 1st `  x
)  ->  ( i  +  1 )  =  ( ( 1st `  x
)  +  1 ) )
4239, 40, 41ifbieq12d 4113 . . . . . . . . . . . . . . . . . . . 20  |-  ( i  =  ( 1st `  x
)  ->  if (
i  <  K , 
i ,  ( i  +  1 ) )  =  if ( ( 1st `  x )  <  K ,  ( 1st `  x ) ,  ( ( 1st `  x )  +  1 ) ) )
4342opeq1d 4408 . . . . . . . . . . . . . . . . . . 19  |-  ( i  =  ( 1st `  x
)  ->  <. if ( i  <  K , 
i ,  ( i  +  1 ) ) ,  if ( j  <  L ,  j ,  ( j  +  1 ) ) >.  =  <. if ( ( 1st `  x )  <  K ,  ( 1st `  x ) ,  ( ( 1st `  x )  +  1 ) ) ,  if ( j  <  L ,  j ,  ( j  +  1 ) ) >. )
44 breq1 4656 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  =  ( 2nd `  x
)  ->  ( j  <  L  <->  ( 2nd `  x
)  <  L )
)
45 id 22 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  =  ( 2nd `  x
)  ->  j  =  ( 2nd `  x ) )
46 oveq1 6657 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  =  ( 2nd `  x
)  ->  ( j  +  1 )  =  ( ( 2nd `  x
)  +  1 ) )
4744, 45, 46ifbieq12d 4113 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  =  ( 2nd `  x
)  ->  if (
j  <  L , 
j ,  ( j  +  1 ) )  =  if ( ( 2nd `  x )  <  L ,  ( 2nd `  x ) ,  ( ( 2nd `  x )  +  1 ) ) )
4847opeq2d 4409 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =  ( 2nd `  x
)  ->  <. if ( ( 1st `  x
)  <  K , 
( 1st `  x
) ,  ( ( 1st `  x )  +  1 ) ) ,  if ( j  <  L ,  j ,  ( j  +  1 ) ) >.  =  <. if ( ( 1st `  x )  <  K ,  ( 1st `  x ) ,  ( ( 1st `  x )  +  1 ) ) ,  if ( ( 2nd `  x
)  <  L , 
( 2nd `  x
) ,  ( ( 2nd `  x )  +  1 ) )
>. )
49 opex 4932 . . . . . . . . . . . . . . . . . . 19  |-  <. if ( ( 1st `  x
)  <  K , 
( 1st `  x
) ,  ( ( 1st `  x )  +  1 ) ) ,  if ( ( 2nd `  x )  <  L ,  ( 2nd `  x ) ,  ( ( 2nd `  x )  +  1 ) ) >.  e.  _V
5043, 48, 5, 49ovmpt2 6796 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN )  -> 
( ( 1st `  x
) ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  <  K ,  i ,  ( i  +  1 ) ) ,  if ( j  < 
L ,  j ,  ( j  +  1 ) ) >. )
( 2nd `  x
) )  =  <. if ( ( 1st `  x
)  <  K , 
( 1st `  x
) ,  ( ( 1st `  x )  +  1 ) ) ,  if ( ( 2nd `  x )  <  L ,  ( 2nd `  x ) ,  ( ( 2nd `  x )  +  1 ) ) >. )
5150adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  /\  ( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  ->  ( ( 1st `  x ) ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  <  K , 
i ,  ( i  +  1 ) ) ,  if ( j  <  L ,  j ,  ( j  +  1 ) ) >.
) ( 2nd `  x
) )  =  <. if ( ( 1st `  x
)  <  K , 
( 1st `  x
) ,  ( ( 1st `  x )  +  1 ) ) ,  if ( ( 2nd `  x )  <  L ,  ( 2nd `  x ) ,  ( ( 2nd `  x )  +  1 ) ) >. )
5238, 51eqtrd 2656 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  /\  ( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  ->  ( ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  <  K , 
i ,  ( i  +  1 ) ) ,  if ( j  <  L ,  j ,  ( j  +  1 ) ) >.
) `  x )  =  <. if ( ( 1st `  x )  <  K ,  ( 1st `  x ) ,  ( ( 1st `  x )  +  1 ) ) ,  if ( ( 2nd `  x
)  <  L , 
( 2nd `  x
) ,  ( ( 2nd `  x )  +  1 ) )
>. )
5352eleq1d 2686 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  /\  ( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  ->  ( ( ( i  e.  NN , 
j  e.  NN  |->  <. if ( i  <  K ,  i ,  ( i  +  1 ) ) ,  if ( j  <  L , 
j ,  ( j  +  1 ) )
>. ) `  x )  e.  ( ( 1 ... M )  X.  ( 1 ... N
) )  <->  <. if ( ( 1st `  x
)  <  K , 
( 1st `  x
) ,  ( ( 1st `  x )  +  1 ) ) ,  if ( ( 2nd `  x )  <  L ,  ( 2nd `  x ) ,  ( ( 2nd `  x )  +  1 ) ) >.  e.  ( ( 1 ... M
)  X.  ( 1 ... N ) ) ) )
54 opelxp 5146 . . . . . . . . . . . . . . 15  |-  ( <. if ( ( 1st `  x
)  <  K , 
( 1st `  x
) ,  ( ( 1st `  x )  +  1 ) ) ,  if ( ( 2nd `  x )  <  L ,  ( 2nd `  x ) ,  ( ( 2nd `  x )  +  1 ) ) >.  e.  ( ( 1 ... M
)  X.  ( 1 ... N ) )  <-> 
( if ( ( 1st `  x )  <  K ,  ( 1st `  x ) ,  ( ( 1st `  x )  +  1 ) )  e.  ( 1 ... M )  /\  if ( ( 2nd `  x )  <  L ,  ( 2nd `  x ) ,  ( ( 2nd `  x )  +  1 ) )  e.  ( 1 ... N ) ) )
5553, 54syl6bb 276 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  /\  ( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  ->  ( ( ( i  e.  NN , 
j  e.  NN  |->  <. if ( i  <  K ,  i ,  ( i  +  1 ) ) ,  if ( j  <  L , 
j ,  ( j  +  1 ) )
>. ) `  x )  e.  ( ( 1 ... M )  X.  ( 1 ... N
) )  <->  ( if ( ( 1st `  x
)  <  K , 
( 1st `  x
) ,  ( ( 1st `  x )  +  1 ) )  e.  ( 1 ... M )  /\  if ( ( 2nd `  x
)  <  L , 
( 2nd `  x
) ,  ( ( 2nd `  x )  +  1 ) )  e.  ( 1 ... N ) ) ) )
56 ifel 4129 . . . . . . . . . . . . . . . 16  |-  ( if ( ( 1st `  x
)  <  K , 
( 1st `  x
) ,  ( ( 1st `  x )  +  1 ) )  e.  ( 1 ... M )  <->  ( (
( 1st `  x
)  <  K  /\  ( 1st `  x )  e.  ( 1 ... M ) )  \/  ( -.  ( 1st `  x )  <  K  /\  ( ( 1st `  x
)  +  1 )  e.  ( 1 ... M ) ) ) )
57 simplrl 800 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )  /\  (
( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  /\  ( 1st `  x
)  <  K )  ->  ( 1st `  x
)  e.  NN )
5857nnred 11035 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )  /\  (
( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  /\  ( 1st `  x
)  <  K )  ->  ( 1st `  x
)  e.  RR )
5913nnred 11035 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  K  e.  RR )
6059ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )  /\  (
( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  /\  ( 1st `  x
)  <  K )  ->  K  e.  RR )
61 smat.m . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  M  e.  NN )
6261nnred 11035 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  M  e.  RR )
6362ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )  /\  (
( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  /\  ( 1st `  x
)  <  K )  ->  M  e.  RR )
64 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )  /\  (
( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  /\  ( 1st `  x
)  <  K )  ->  ( 1st `  x
)  <  K )
6558, 60, 64ltled 10185 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )  /\  (
( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  /\  ( 1st `  x
)  <  K )  ->  ( 1st `  x
)  <_  K )
66 elfzle2 12345 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( K  e.  ( 1 ... M )  ->  K  <_  M )
6712, 66syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  K  <_  M )
6867ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )  /\  (
( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  /\  ( 1st `  x
)  <  K )  ->  K  <_  M )
6958, 60, 63, 65, 68letrd 10194 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )  /\  (
( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  /\  ( 1st `  x
)  <  K )  ->  ( 1st `  x
)  <_  M )
7057, 69jca 554 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )  /\  (
( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  /\  ( 1st `  x
)  <  K )  ->  ( ( 1st `  x
)  e.  NN  /\  ( 1st `  x )  <_  M ) )
7161nnzd 11481 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  M  e.  ZZ )
72 fznn 12408 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( M  e.  ZZ  ->  (
( 1st `  x
)  e.  ( 1 ... M )  <->  ( ( 1st `  x )  e.  NN  /\  ( 1st `  x )  <_  M
) ) )
7371, 72syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( 1st `  x
)  e.  ( 1 ... M )  <->  ( ( 1st `  x )  e.  NN  /\  ( 1st `  x )  <_  M
) ) )
7473ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )  /\  (
( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  /\  ( 1st `  x
)  <  K )  ->  ( ( 1st `  x
)  e.  ( 1 ... M )  <->  ( ( 1st `  x )  e.  NN  /\  ( 1st `  x )  <_  M
) ) )
7570, 74mpbird 247 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )  /\  (
( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  /\  ( 1st `  x
)  <  K )  ->  ( 1st `  x
)  e.  ( 1 ... M ) )
7658, 60, 63, 64, 68ltletrd 10197 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )  /\  (
( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  /\  ( 1st `  x
)  <  K )  ->  ( 1st `  x
)  <  M )
7761ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )  /\  (
( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  /\  ( 1st `  x
)  <  K )  ->  M  e.  NN )
78 nnltlem1 11444 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( 1st `  x
)  e.  NN  /\  M  e.  NN )  ->  ( ( 1st `  x
)  <  M  <->  ( 1st `  x )  <_  ( M  -  1 ) ) )
7957, 77, 78syl2anc 693 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )  /\  (
( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  /\  ( 1st `  x
)  <  K )  ->  ( ( 1st `  x
)  <  M  <->  ( 1st `  x )  <_  ( M  -  1 ) ) )
8076, 79mpbid 222 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )  /\  (
( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  /\  ( 1st `  x
)  <  K )  ->  ( 1st `  x
)  <_  ( M  -  1 ) )
8175, 802thd 255 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )  /\  (
( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  /\  ( 1st `  x
)  <  K )  ->  ( ( 1st `  x
)  e.  ( 1 ... M )  <->  ( 1st `  x )  <_  ( M  -  1 ) ) )
8281pm5.32da 673 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  /\  ( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  ->  ( ( ( 1st `  x )  <  K  /\  ( 1st `  x )  e.  ( 1 ... M
) )  <->  ( ( 1st `  x )  < 
K  /\  ( 1st `  x )  <_  ( M  -  1 ) ) ) )
83 fznn 12408 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( M  e.  ZZ  ->  (
( ( 1st `  x
)  +  1 )  e.  ( 1 ... M )  <->  ( (
( 1st `  x
)  +  1 )  e.  NN  /\  (
( 1st `  x
)  +  1 )  <_  M ) ) )
8471, 83syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( ( 1st `  x )  +  1 )  e.  ( 1 ... M )  <->  ( (
( 1st `  x
)  +  1 )  e.  NN  /\  (
( 1st `  x
)  +  1 )  <_  M ) ) )
8584ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  /\  ( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  ->  ( ( ( 1st `  x )  +  1 )  e.  ( 1 ... M
)  <->  ( ( ( 1st `  x )  +  1 )  e.  NN  /\  ( ( 1st `  x )  +  1 )  <_  M ) ) )
86 simprl 794 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  /\  ( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  ->  ( 1st `  x
)  e.  NN )
8786peano2nnd 11037 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  /\  ( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  ->  ( ( 1st `  x )  +  1 )  e.  NN )
8887biantrurd 529 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  /\  ( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  ->  ( ( ( 1st `  x )  +  1 )  <_  M 
<->  ( ( ( 1st `  x )  +  1 )  e.  NN  /\  ( ( 1st `  x
)  +  1 )  <_  M ) ) )
8986nnzd 11481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  /\  ( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  ->  ( 1st `  x
)  e.  ZZ )
9071ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  /\  ( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  ->  M  e.  ZZ )
91 zltp1le 11427 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( 1st `  x
)  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( 1st `  x
)  <  M  <->  ( ( 1st `  x )  +  1 )  <_  M
) )
92 zltlem1 11430 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( 1st `  x
)  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( 1st `  x
)  <  M  <->  ( 1st `  x )  <_  ( M  -  1 ) ) )
9391, 92bitr3d 270 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( 1st `  x
)  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( 1st `  x )  +  1 )  <_  M  <->  ( 1st `  x )  <_  ( M  -  1 ) ) )
9489, 90, 93syl2anc 693 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  /\  ( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  ->  ( ( ( 1st `  x )  +  1 )  <_  M 
<->  ( 1st `  x
)  <_  ( M  -  1 ) ) )
9585, 88, 943bitr2d 296 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  /\  ( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  ->  ( ( ( 1st `  x )  +  1 )  e.  ( 1 ... M
)  <->  ( 1st `  x
)  <_  ( M  -  1 ) ) )
9695anbi2d 740 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  /\  ( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  ->  ( ( -.  ( 1st `  x
)  <  K  /\  ( ( 1st `  x
)  +  1 )  e.  ( 1 ... M ) )  <->  ( -.  ( 1st `  x )  <  K  /\  ( 1st `  x )  <_ 
( M  -  1 ) ) ) )
9782, 96orbi12d 746 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  /\  ( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  ->  ( ( ( ( 1st `  x
)  <  K  /\  ( 1st `  x )  e.  ( 1 ... M ) )  \/  ( -.  ( 1st `  x )  <  K  /\  ( ( 1st `  x
)  +  1 )  e.  ( 1 ... M ) ) )  <-> 
( ( ( 1st `  x )  <  K  /\  ( 1st `  x
)  <_  ( M  -  1 ) )  \/  ( -.  ( 1st `  x )  < 
K  /\  ( 1st `  x )  <_  ( M  -  1 ) ) ) ) )
98 pm4.42 1004 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1st `  x )  <_  ( M  - 
1 )  <->  ( (
( 1st `  x
)  <_  ( M  -  1 )  /\  ( 1st `  x )  <  K )  \/  ( ( 1st `  x
)  <_  ( M  -  1 )  /\  -.  ( 1st `  x
)  <  K )
) )
99 ancom 466 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( 1st `  x
)  <_  ( M  -  1 )  /\  ( 1st `  x )  <  K )  <->  ( ( 1st `  x )  < 
K  /\  ( 1st `  x )  <_  ( M  -  1 ) ) )
100 ancom 466 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( 1st `  x
)  <_  ( M  -  1 )  /\  -.  ( 1st `  x
)  <  K )  <->  ( -.  ( 1st `  x
)  <  K  /\  ( 1st `  x )  <_  ( M  - 
1 ) ) )
10199, 100orbi12i 543 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( 1st `  x
)  <_  ( M  -  1 )  /\  ( 1st `  x )  <  K )  \/  ( ( 1st `  x
)  <_  ( M  -  1 )  /\  -.  ( 1st `  x
)  <  K )
)  <->  ( ( ( 1st `  x )  <  K  /\  ( 1st `  x )  <_ 
( M  -  1 ) )  \/  ( -.  ( 1st `  x
)  <  K  /\  ( 1st `  x )  <_  ( M  - 
1 ) ) ) )
10298, 101bitri 264 . . . . . . . . . . . . . . . . 17  |-  ( ( 1st `  x )  <_  ( M  - 
1 )  <->  ( (
( 1st `  x
)  <  K  /\  ( 1st `  x )  <_  ( M  - 
1 ) )  \/  ( -.  ( 1st `  x )  <  K  /\  ( 1st `  x
)  <_  ( M  -  1 ) ) ) )
10397, 102syl6bbr 278 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  /\  ( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  ->  ( ( ( ( 1st `  x
)  <  K  /\  ( 1st `  x )  e.  ( 1 ... M ) )  \/  ( -.  ( 1st `  x )  <  K  /\  ( ( 1st `  x
)  +  1 )  e.  ( 1 ... M ) ) )  <-> 
( 1st `  x
)  <_  ( M  -  1 ) ) )
10456, 103syl5bb 272 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  /\  ( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  ->  ( if ( ( 1st `  x
)  <  K , 
( 1st `  x
) ,  ( ( 1st `  x )  +  1 ) )  e.  ( 1 ... M )  <->  ( 1st `  x )  <_  ( M  -  1 ) ) )
105 ifel 4129 . . . . . . . . . . . . . . . 16  |-  ( if ( ( 2nd `  x
)  <  L , 
( 2nd `  x
) ,  ( ( 2nd `  x )  +  1 ) )  e.  ( 1 ... N )  <->  ( (
( 2nd `  x
)  <  L  /\  ( 2nd `  x )  e.  ( 1 ... N ) )  \/  ( -.  ( 2nd `  x )  <  L  /\  ( ( 2nd `  x
)  +  1 )  e.  ( 1 ... N ) ) ) )
106 simplrr 801 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )  /\  (
( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  /\  ( 2nd `  x
)  <  L )  ->  ( 2nd `  x
)  e.  NN )
107106nnred 11035 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )  /\  (
( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  /\  ( 2nd `  x
)  <  L )  ->  ( 2nd `  x
)  e.  RR )
10816nnred 11035 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  L  e.  RR )
109108ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )  /\  (
( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  /\  ( 2nd `  x
)  <  L )  ->  L  e.  RR )
110 smat.n . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  N  e.  NN )
111110nnred 11035 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  N  e.  RR )
112111ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )  /\  (
( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  /\  ( 2nd `  x
)  <  L )  ->  N  e.  RR )
113 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )  /\  (
( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  /\  ( 2nd `  x
)  <  L )  ->  ( 2nd `  x
)  <  L )
114107, 109, 113ltled 10185 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )  /\  (
( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  /\  ( 2nd `  x
)  <  L )  ->  ( 2nd `  x
)  <_  L )
115 elfzle2 12345 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( L  e.  ( 1 ... N )  ->  L  <_  N )
11615, 115syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  L  <_  N )
117116ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )  /\  (
( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  /\  ( 2nd `  x
)  <  L )  ->  L  <_  N )
118107, 109, 112, 114, 117letrd 10194 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )  /\  (
( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  /\  ( 2nd `  x
)  <  L )  ->  ( 2nd `  x
)  <_  N )
119106, 118jca 554 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )  /\  (
( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  /\  ( 2nd `  x
)  <  L )  ->  ( ( 2nd `  x
)  e.  NN  /\  ( 2nd `  x )  <_  N ) )
120110nnzd 11481 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  N  e.  ZZ )
121 fznn 12408 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( N  e.  ZZ  ->  (
( 2nd `  x
)  e.  ( 1 ... N )  <->  ( ( 2nd `  x )  e.  NN  /\  ( 2nd `  x )  <_  N
) ) )
122120, 121syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( 2nd `  x
)  e.  ( 1 ... N )  <->  ( ( 2nd `  x )  e.  NN  /\  ( 2nd `  x )  <_  N
) ) )
123122ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )  /\  (
( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  /\  ( 2nd `  x
)  <  L )  ->  ( ( 2nd `  x
)  e.  ( 1 ... N )  <->  ( ( 2nd `  x )  e.  NN  /\  ( 2nd `  x )  <_  N
) ) )
124119, 123mpbird 247 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )  /\  (
( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  /\  ( 2nd `  x
)  <  L )  ->  ( 2nd `  x
)  e.  ( 1 ... N ) )
125107, 109, 112, 113, 117ltletrd 10197 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )  /\  (
( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  /\  ( 2nd `  x
)  <  L )  ->  ( 2nd `  x
)  <  N )
126110ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )  /\  (
( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  /\  ( 2nd `  x
)  <  L )  ->  N  e.  NN )
127 nnltlem1 11444 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( 2nd `  x
)  e.  NN  /\  N  e.  NN )  ->  ( ( 2nd `  x
)  <  N  <->  ( 2nd `  x )  <_  ( N  -  1 ) ) )
128106, 126, 127syl2anc 693 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )  /\  (
( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  /\  ( 2nd `  x
)  <  L )  ->  ( ( 2nd `  x
)  <  N  <->  ( 2nd `  x )  <_  ( N  -  1 ) ) )
129125, 128mpbid 222 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )  /\  (
( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  /\  ( 2nd `  x
)  <  L )  ->  ( 2nd `  x
)  <_  ( N  -  1 ) )
130124, 1292thd 255 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )  /\  (
( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  /\  ( 2nd `  x
)  <  L )  ->  ( ( 2nd `  x
)  e.  ( 1 ... N )  <->  ( 2nd `  x )  <_  ( N  -  1 ) ) )
131130pm5.32da 673 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  /\  ( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  ->  ( ( ( 2nd `  x )  <  L  /\  ( 2nd `  x )  e.  ( 1 ... N
) )  <->  ( ( 2nd `  x )  < 
L  /\  ( 2nd `  x )  <_  ( N  -  1 ) ) ) )
132 fznn 12408 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( N  e.  ZZ  ->  (
( ( 2nd `  x
)  +  1 )  e.  ( 1 ... N )  <->  ( (
( 2nd `  x
)  +  1 )  e.  NN  /\  (
( 2nd `  x
)  +  1 )  <_  N ) ) )
133120, 132syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( ( 2nd `  x )  +  1 )  e.  ( 1 ... N )  <->  ( (
( 2nd `  x
)  +  1 )  e.  NN  /\  (
( 2nd `  x
)  +  1 )  <_  N ) ) )
134133ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  /\  ( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  ->  ( ( ( 2nd `  x )  +  1 )  e.  ( 1 ... N
)  <->  ( ( ( 2nd `  x )  +  1 )  e.  NN  /\  ( ( 2nd `  x )  +  1 )  <_  N ) ) )
135 simprr 796 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  /\  ( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  ->  ( 2nd `  x
)  e.  NN )
136135peano2nnd 11037 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  /\  ( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  ->  ( ( 2nd `  x )  +  1 )  e.  NN )
137136biantrurd 529 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  /\  ( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  ->  ( ( ( 2nd `  x )  +  1 )  <_  N 
<->  ( ( ( 2nd `  x )  +  1 )  e.  NN  /\  ( ( 2nd `  x
)  +  1 )  <_  N ) ) )
138135nnzd 11481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  /\  ( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  ->  ( 2nd `  x
)  e.  ZZ )
139120ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  /\  ( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  ->  N  e.  ZZ )
140 zltp1le 11427 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( 2nd `  x
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( 2nd `  x
)  <  N  <->  ( ( 2nd `  x )  +  1 )  <_  N
) )
141 zltlem1 11430 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( 2nd `  x
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( 2nd `  x
)  <  N  <->  ( 2nd `  x )  <_  ( N  -  1 ) ) )
142140, 141bitr3d 270 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( 2nd `  x
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( 2nd `  x )  +  1 )  <_  N  <->  ( 2nd `  x )  <_  ( N  -  1 ) ) )
143138, 139, 142syl2anc 693 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  /\  ( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  ->  ( ( ( 2nd `  x )  +  1 )  <_  N 
<->  ( 2nd `  x
)  <_  ( N  -  1 ) ) )
144134, 137, 1433bitr2d 296 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  /\  ( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  ->  ( ( ( 2nd `  x )  +  1 )  e.  ( 1 ... N
)  <->  ( 2nd `  x
)  <_  ( N  -  1 ) ) )
145144anbi2d 740 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  /\  ( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  ->  ( ( -.  ( 2nd `  x
)  <  L  /\  ( ( 2nd `  x
)  +  1 )  e.  ( 1 ... N ) )  <->  ( -.  ( 2nd `  x )  <  L  /\  ( 2nd `  x )  <_ 
( N  -  1 ) ) ) )
146131, 145orbi12d 746 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  /\  ( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  ->  ( ( ( ( 2nd `  x
)  <  L  /\  ( 2nd `  x )  e.  ( 1 ... N ) )  \/  ( -.  ( 2nd `  x )  <  L  /\  ( ( 2nd `  x
)  +  1 )  e.  ( 1 ... N ) ) )  <-> 
( ( ( 2nd `  x )  <  L  /\  ( 2nd `  x
)  <_  ( N  -  1 ) )  \/  ( -.  ( 2nd `  x )  < 
L  /\  ( 2nd `  x )  <_  ( N  -  1 ) ) ) ) )
147 pm4.42 1004 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2nd `  x )  <_  ( N  - 
1 )  <->  ( (
( 2nd `  x
)  <_  ( N  -  1 )  /\  ( 2nd `  x )  <  L )  \/  ( ( 2nd `  x
)  <_  ( N  -  1 )  /\  -.  ( 2nd `  x
)  <  L )
) )
148 ancom 466 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( 2nd `  x
)  <_  ( N  -  1 )  /\  ( 2nd `  x )  <  L )  <->  ( ( 2nd `  x )  < 
L  /\  ( 2nd `  x )  <_  ( N  -  1 ) ) )
149 ancom 466 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( 2nd `  x
)  <_  ( N  -  1 )  /\  -.  ( 2nd `  x
)  <  L )  <->  ( -.  ( 2nd `  x
)  <  L  /\  ( 2nd `  x )  <_  ( N  - 
1 ) ) )
150148, 149orbi12i 543 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( 2nd `  x
)  <_  ( N  -  1 )  /\  ( 2nd `  x )  <  L )  \/  ( ( 2nd `  x
)  <_  ( N  -  1 )  /\  -.  ( 2nd `  x
)  <  L )
)  <->  ( ( ( 2nd `  x )  <  L  /\  ( 2nd `  x )  <_ 
( N  -  1 ) )  \/  ( -.  ( 2nd `  x
)  <  L  /\  ( 2nd `  x )  <_  ( N  - 
1 ) ) ) )
151147, 150bitri 264 . . . . . . . . . . . . . . . . 17  |-  ( ( 2nd `  x )  <_  ( N  - 
1 )  <->  ( (
( 2nd `  x
)  <  L  /\  ( 2nd `  x )  <_  ( N  - 
1 ) )  \/  ( -.  ( 2nd `  x )  <  L  /\  ( 2nd `  x
)  <_  ( N  -  1 ) ) ) )
152146, 151syl6bbr 278 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  /\  ( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  ->  ( ( ( ( 2nd `  x
)  <  L  /\  ( 2nd `  x )  e.  ( 1 ... N ) )  \/  ( -.  ( 2nd `  x )  <  L  /\  ( ( 2nd `  x
)  +  1 )  e.  ( 1 ... N ) ) )  <-> 
( 2nd `  x
)  <_  ( N  -  1 ) ) )
153105, 152syl5bb 272 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  /\  ( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  ->  ( if ( ( 2nd `  x
)  <  L , 
( 2nd `  x
) ,  ( ( 2nd `  x )  +  1 ) )  e.  ( 1 ... N )  <->  ( 2nd `  x )  <_  ( N  -  1 ) ) )
154104, 153anbi12d 747 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  /\  ( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  ->  ( ( if ( ( 1st `  x
)  <  K , 
( 1st `  x
) ,  ( ( 1st `  x )  +  1 ) )  e.  ( 1 ... M )  /\  if ( ( 2nd `  x
)  <  L , 
( 2nd `  x
) ,  ( ( 2nd `  x )  +  1 ) )  e.  ( 1 ... N ) )  <->  ( ( 1st `  x )  <_ 
( M  -  1 )  /\  ( 2nd `  x )  <_  ( N  -  1 ) ) ) )
15555, 154bitrd 268 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  /\  ( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  ->  ( ( ( i  e.  NN , 
j  e.  NN  |->  <. if ( i  <  K ,  i ,  ( i  +  1 ) ) ,  if ( j  <  L , 
j ,  ( j  +  1 ) )
>. ) `  x )  e.  ( ( 1 ... M )  X.  ( 1 ... N
) )  <->  ( ( 1st `  x )  <_ 
( M  -  1 )  /\  ( 2nd `  x )  <_  ( N  -  1 ) ) ) )
156155pm5.32da 673 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  ->  ( ( ( ( 1st `  x )  e.  NN  /\  ( 2nd `  x )  e.  NN )  /\  (
( i  e.  NN ,  j  e.  NN  |->  <. if ( i  < 
K ,  i ,  ( i  +  1 ) ) ,  if ( j  <  L ,  j ,  ( j  +  1 ) ) >. ) `  x
)  e.  ( ( 1 ... M )  X.  ( 1 ... N ) ) )  <-> 
( ( ( 1st `  x )  e.  NN  /\  ( 2nd `  x
)  e.  NN )  /\  ( ( 1st `  x )  <_  ( M  -  1 )  /\  ( 2nd `  x
)  <_  ( N  -  1 ) ) ) ) )
157 1zzd 11408 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  1  e.  ZZ )
15871, 157zsubcld 11487 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( M  -  1 )  e.  ZZ )
159 fznn 12408 . . . . . . . . . . . . . . . 16  |-  ( ( M  -  1 )  e.  ZZ  ->  (
( 1st `  x
)  e.  ( 1 ... ( M  - 
1 ) )  <->  ( ( 1st `  x )  e.  NN  /\  ( 1st `  x )  <_  ( M  -  1 ) ) ) )
160158, 159syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 1st `  x
)  e.  ( 1 ... ( M  - 
1 ) )  <->  ( ( 1st `  x )  e.  NN  /\  ( 1st `  x )  <_  ( M  -  1 ) ) ) )
161120, 157zsubcld 11487 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( N  -  1 )  e.  ZZ )
162 fznn 12408 . . . . . . . . . . . . . . . 16  |-  ( ( N  -  1 )  e.  ZZ  ->  (
( 2nd `  x
)  e.  ( 1 ... ( N  - 
1 ) )  <->  ( ( 2nd `  x )  e.  NN  /\  ( 2nd `  x )  <_  ( N  -  1 ) ) ) )
163161, 162syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 2nd `  x
)  e.  ( 1 ... ( N  - 
1 ) )  <->  ( ( 2nd `  x )  e.  NN  /\  ( 2nd `  x )  <_  ( N  -  1 ) ) ) )
164160, 163anbi12d 747 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( 1st `  x )  e.  ( 1 ... ( M  -  1 ) )  /\  ( 2nd `  x
)  e.  ( 1 ... ( N  - 
1 ) ) )  <-> 
( ( ( 1st `  x )  e.  NN  /\  ( 1st `  x
)  <_  ( M  -  1 ) )  /\  ( ( 2nd `  x )  e.  NN  /\  ( 2nd `  x
)  <_  ( N  -  1 ) ) ) ) )
165 an4 865 . . . . . . . . . . . . . 14  |-  ( ( ( ( 1st `  x
)  e.  NN  /\  ( 1st `  x )  <_  ( M  - 
1 ) )  /\  ( ( 2nd `  x
)  e.  NN  /\  ( 2nd `  x )  <_  ( N  - 
1 ) ) )  <-> 
( ( ( 1st `  x )  e.  NN  /\  ( 2nd `  x
)  e.  NN )  /\  ( ( 1st `  x )  <_  ( M  -  1 )  /\  ( 2nd `  x
)  <_  ( N  -  1 ) ) ) )
166164, 165syl6bb 276 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( 1st `  x )  e.  ( 1 ... ( M  -  1 ) )  /\  ( 2nd `  x
)  e.  ( 1 ... ( N  - 
1 ) ) )  <-> 
( ( ( 1st `  x )  e.  NN  /\  ( 2nd `  x
)  e.  NN )  /\  ( ( 1st `  x )  <_  ( M  -  1 )  /\  ( 2nd `  x
)  <_  ( N  -  1 ) ) ) ) )
167166adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  ->  ( ( ( 1st `  x )  e.  ( 1 ... ( M  -  1 ) )  /\  ( 2nd `  x
)  e.  ( 1 ... ( N  - 
1 ) ) )  <-> 
( ( ( 1st `  x )  e.  NN  /\  ( 2nd `  x
)  e.  NN )  /\  ( ( 1st `  x )  <_  ( M  -  1 )  /\  ( 2nd `  x
)  <_  ( N  -  1 ) ) ) ) )
168156, 167bitr4d 271 . . . . . . . . . . 11  |-  ( (
ph  /\  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  ->  ( ( ( ( 1st `  x )  e.  NN  /\  ( 2nd `  x )  e.  NN )  /\  (
( i  e.  NN ,  j  e.  NN  |->  <. if ( i  < 
K ,  i ,  ( i  +  1 ) ) ,  if ( j  <  L ,  j ,  ( j  +  1 ) ) >. ) `  x
)  e.  ( ( 1 ... M )  X.  ( 1 ... N ) ) )  <-> 
( ( 1st `  x
)  e.  ( 1 ... ( M  - 
1 ) )  /\  ( 2nd `  x )  e.  ( 1 ... ( N  -  1 ) ) ) ) )
169168pm5.32da 673 . . . . . . . . . 10  |-  ( ph  ->  ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN )  /\  ( ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  <  K ,  i ,  ( i  +  1 ) ) ,  if ( j  < 
L ,  j ,  ( j  +  1 ) ) >. ) `  x )  e.  ( ( 1 ... M
)  X.  ( 1 ... N ) ) ) )  <->  ( x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ( 1 ... ( M  - 
1 ) )  /\  ( 2nd `  x )  e.  ( 1 ... ( N  -  1 ) ) ) ) ) )
170 elxp6 7200 . . . . . . . . . . . 12  |-  ( x  e.  ( NN  X.  NN )  <->  ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) ) )
171170anbi1i 731 . . . . . . . . . . 11  |-  ( ( x  e.  ( NN 
X.  NN )  /\  ( ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  <  K ,  i ,  ( i  +  1 ) ) ,  if ( j  < 
L ,  j ,  ( j  +  1 ) ) >. ) `  x )  e.  ( ( 1 ... M
)  X.  ( 1 ... N ) ) )  <->  ( ( x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  /\  ( ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  <  K , 
i ,  ( i  +  1 ) ) ,  if ( j  <  L ,  j ,  ( j  +  1 ) ) >.
) `  x )  e.  ( ( 1 ... M )  X.  (
1 ... N ) ) ) )
172 anass 681 . . . . . . . . . . 11  |-  ( ( ( x  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >.  /\  ( ( 1st `  x )  e.  NN  /\  ( 2nd `  x )  e.  NN ) )  /\  (
( i  e.  NN ,  j  e.  NN  |->  <. if ( i  < 
K ,  i ,  ( i  +  1 ) ) ,  if ( j  <  L ,  j ,  ( j  +  1 ) ) >. ) `  x
)  e.  ( ( 1 ... M )  X.  ( 1 ... N ) ) )  <-> 
( x  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >.  /\  ( (
( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN )  /\  ( ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  <  K ,  i ,  ( i  +  1 ) ) ,  if ( j  < 
L ,  j ,  ( j  +  1 ) ) >. ) `  x )  e.  ( ( 1 ... M
)  X.  ( 1 ... N ) ) ) ) )
173171, 172bitri 264 . . . . . . . . . 10  |-  ( ( x  e.  ( NN 
X.  NN )  /\  ( ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  <  K ,  i ,  ( i  +  1 ) ) ,  if ( j  < 
L ,  j ,  ( j  +  1 ) ) >. ) `  x )  e.  ( ( 1 ... M
)  X.  ( 1 ... N ) ) )  <->  ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( ( 1st `  x
)  e.  NN  /\  ( 2nd `  x )  e.  NN )  /\  ( ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  <  K ,  i ,  ( i  +  1 ) ) ,  if ( j  < 
L ,  j ,  ( j  +  1 ) ) >. ) `  x )  e.  ( ( 1 ... M
)  X.  ( 1 ... N ) ) ) ) )
174 elxp6 7200 . . . . . . . . . 10  |-  ( x  e.  ( ( 1 ... ( M  - 
1 ) )  X.  ( 1 ... ( N  -  1 ) ) )  <->  ( x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ( 1 ... ( M  - 
1 ) )  /\  ( 2nd `  x )  e.  ( 1 ... ( N  -  1 ) ) ) ) )
175169, 173, 1743bitr4g 303 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  ( NN  X.  NN )  /\  ( ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  <  K , 
i ,  ( i  +  1 ) ) ,  if ( j  <  L ,  j ,  ( j  +  1 ) ) >.
) `  x )  e.  ( ( 1 ... M )  X.  (
1 ... N ) ) )  <->  x  e.  (
( 1 ... ( M  -  1 ) )  X.  ( 1 ... ( N  - 
1 ) ) ) ) )
17629, 34, 1753bitrd 294 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( `' ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  <  K ,  i ,  ( i  +  1 ) ) ,  if ( j  < 
L ,  j ,  ( j  +  1 ) ) >. ) " dom  A )  <->  x  e.  ( ( 1 ... ( M  -  1 ) )  X.  (
1 ... ( N  - 
1 ) ) ) ) )
177176eqrdv 2620 . . . . . . 7  |-  ( ph  ->  ( `' ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  <  K , 
i ,  ( i  +  1 ) ) ,  if ( j  <  L ,  j ,  ( j  +  1 ) ) >.
) " dom  A
)  =  ( ( 1 ... ( M  -  1 ) )  X.  ( 1 ... ( N  -  1 ) ) ) )
17825, 177syl5eq 2668 . . . . . 6  |-  ( ph  ->  dom  ( A  o.  ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  < 
K ,  i ,  ( i  +  1 ) ) ,  if ( j  <  L ,  j ,  ( j  +  1 ) ) >. ) )  =  ( ( 1 ... ( M  -  1 ) )  X.  (
1 ... ( N  - 
1 ) ) ) )
17924, 178eqtrd 2656 . . . . 5  |-  ( ph  ->  dom  S  =  ( ( 1 ... ( M  -  1 ) )  X.  ( 1 ... ( N  - 
1 ) ) ) )
180179feq2d 6031 . . . 4  |-  ( ph  ->  ( S : dom  S --> ran  S  <->  S :
( ( 1 ... ( M  -  1 ) )  X.  (
1 ... ( N  - 
1 ) ) ) --> ran  S ) )
18123, 180mpbid 222 . . 3  |-  ( ph  ->  S : ( ( 1 ... ( M  -  1 ) )  X.  ( 1 ... ( N  -  1 ) ) ) --> ran 
S )
18219rneqd 5353 . . . . 5  |-  ( ph  ->  ran  S  =  ran  ( A  o.  (
i  e.  NN , 
j  e.  NN  |->  <. if ( i  <  K ,  i ,  ( i  +  1 ) ) ,  if ( j  <  L , 
j ,  ( j  +  1 ) )
>. ) ) )
183 rncoss 5386 . . . . 5  |-  ran  ( A  o.  ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  <  K ,  i ,  ( i  +  1 ) ) ,  if ( j  < 
L ,  j ,  ( j  +  1 ) ) >. )
)  C_  ran  A
184182, 183syl6eqss 3655 . . . 4  |-  ( ph  ->  ran  S  C_  ran  A )
185 frn 6053 . . . . 5  |-  ( A : ( ( 1 ... M )  X.  ( 1 ... N
) ) --> B  ->  ran  A  C_  B )
1861, 2, 1853syl 18 . . . 4  |-  ( ph  ->  ran  A  C_  B
)
187184, 186sstrd 3613 . . 3  |-  ( ph  ->  ran  S  C_  B
)
188 fss 6056 . . 3  |-  ( ( S : ( ( 1 ... ( M  -  1 ) )  X.  ( 1 ... ( N  -  1 ) ) ) --> ran 
S  /\  ran  S  C_  B )  ->  S : ( ( 1 ... ( M  - 
1 ) )  X.  ( 1 ... ( N  -  1 ) ) ) --> B )
189181, 187, 188syl2anc 693 . 2  |-  ( ph  ->  S : ( ( 1 ... ( M  -  1 ) )  X.  ( 1 ... ( N  -  1 ) ) ) --> B )
190 reldmmap 7866 . . . . . 6  |-  Rel  dom  ^m
191190ovrcl 6686 . . . . 5  |-  ( A  e.  ( B  ^m  ( ( 1 ... M )  X.  (
1 ... N ) ) )  ->  ( B  e.  _V  /\  ( ( 1 ... M )  X.  ( 1 ... N ) )  e. 
_V ) )
1921, 191syl 17 . . . 4  |-  ( ph  ->  ( B  e.  _V  /\  ( ( 1 ... M )  X.  (
1 ... N ) )  e.  _V ) )
193192simpld 475 . . 3  |-  ( ph  ->  B  e.  _V )
194 ovex 6678 . . . 4  |-  ( 1 ... ( M  - 
1 ) )  e. 
_V
195 ovex 6678 . . . 4  |-  ( 1 ... ( N  - 
1 ) )  e. 
_V
196194, 195xpex 6962 . . 3  |-  ( ( 1 ... ( M  -  1 ) )  X.  ( 1 ... ( N  -  1 ) ) )  e. 
_V
197 elmapg 7870 . . 3  |-  ( ( B  e.  _V  /\  ( ( 1 ... ( M  -  1 ) )  X.  (
1 ... ( N  - 
1 ) ) )  e.  _V )  -> 
( S  e.  ( B  ^m  ( ( 1 ... ( M  -  1 ) )  X.  ( 1 ... ( N  -  1 ) ) ) )  <-> 
S : ( ( 1 ... ( M  -  1 ) )  X.  ( 1 ... ( N  -  1 ) ) ) --> B ) )
198193, 196, 197sylancl 694 . 2  |-  ( ph  ->  ( S  e.  ( B  ^m  ( ( 1 ... ( M  -  1 ) )  X.  ( 1 ... ( N  -  1 ) ) ) )  <-> 
S : ( ( 1 ... ( M  -  1 ) )  X.  ( 1 ... ( N  -  1 ) ) ) --> B ) )
199189, 198mpbird 247 1  |-  ( ph  ->  S  e.  ( B  ^m  ( ( 1 ... ( M  - 
1 ) )  X.  ( 1 ... ( N  -  1 ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   ifcif 4086   <.cop 4183   class class class wbr 4653    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117    o. ccom 5118   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167    ^m cmap 7857   RRcr 9935   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   ZZcz 11377   ...cfz 12326  subMat1csmat 29859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-smat 29860
This theorem is referenced by:  smatcl  29868  1smat1  29870
  Copyright terms: Public domain W3C validator