MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  muval2 Structured version   Visualization version   Unicode version

Theorem muval2 24860
Description: The value of the Möbius function at a squarefree number. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
muval2  |-  ( ( A  e.  NN  /\  ( mmu `  A )  =/=  0 )  -> 
( mmu `  A
)  =  ( -u
1 ^ ( # `  { p  e.  Prime  |  p  ||  A }
) ) )
Distinct variable group:    A, p

Proof of Theorem muval2
StepHypRef Expression
1 df-ne 2795 . . 3  |-  ( ( mmu `  A )  =/=  0  <->  -.  (
mmu `  A )  =  0 )
2 ifeqor 4132 . . . . 5  |-  ( if ( E. p  e. 
Prime  ( p ^ 2 )  ||  A , 
0 ,  ( -u
1 ^ ( # `  { p  e.  Prime  |  p  ||  A }
) ) )  =  0  \/  if ( E. p  e.  Prime  ( p ^ 2 ) 
||  A ,  0 ,  ( -u 1 ^ ( # `  {
p  e.  Prime  |  p 
||  A } ) ) )  =  (
-u 1 ^ ( # `
 { p  e. 
Prime  |  p  ||  A } ) ) )
3 muval 24858 . . . . . . 7  |-  ( A  e.  NN  ->  (
mmu `  A )  =  if ( E. p  e.  Prime  ( p ^
2 )  ||  A ,  0 ,  (
-u 1 ^ ( # `
 { p  e. 
Prime  |  p  ||  A } ) ) ) )
43eqeq1d 2624 . . . . . 6  |-  ( A  e.  NN  ->  (
( mmu `  A
)  =  0  <->  if ( E. p  e.  Prime  ( p ^ 2 ) 
||  A ,  0 ,  ( -u 1 ^ ( # `  {
p  e.  Prime  |  p 
||  A } ) ) )  =  0 ) )
53eqeq1d 2624 . . . . . 6  |-  ( A  e.  NN  ->  (
( mmu `  A
)  =  ( -u
1 ^ ( # `  { p  e.  Prime  |  p  ||  A }
) )  <->  if ( E. p  e.  Prime  ( p ^ 2 ) 
||  A ,  0 ,  ( -u 1 ^ ( # `  {
p  e.  Prime  |  p 
||  A } ) ) )  =  (
-u 1 ^ ( # `
 { p  e. 
Prime  |  p  ||  A } ) ) ) )
64, 5orbi12d 746 . . . . 5  |-  ( A  e.  NN  ->  (
( ( mmu `  A )  =  0  \/  ( mmu `  A )  =  (
-u 1 ^ ( # `
 { p  e. 
Prime  |  p  ||  A } ) ) )  <-> 
( if ( E. p  e.  Prime  (
p ^ 2 ) 
||  A ,  0 ,  ( -u 1 ^ ( # `  {
p  e.  Prime  |  p 
||  A } ) ) )  =  0  \/  if ( E. p  e.  Prime  (
p ^ 2 ) 
||  A ,  0 ,  ( -u 1 ^ ( # `  {
p  e.  Prime  |  p 
||  A } ) ) )  =  (
-u 1 ^ ( # `
 { p  e. 
Prime  |  p  ||  A } ) ) ) ) )
72, 6mpbiri 248 . . . 4  |-  ( A  e.  NN  ->  (
( mmu `  A
)  =  0  \/  ( mmu `  A
)  =  ( -u
1 ^ ( # `  { p  e.  Prime  |  p  ||  A }
) ) ) )
87ord 392 . . 3  |-  ( A  e.  NN  ->  ( -.  ( mmu `  A
)  =  0  -> 
( mmu `  A
)  =  ( -u
1 ^ ( # `  { p  e.  Prime  |  p  ||  A }
) ) ) )
91, 8syl5bi 232 . 2  |-  ( A  e.  NN  ->  (
( mmu `  A
)  =/=  0  -> 
( mmu `  A
)  =  ( -u
1 ^ ( # `  { p  e.  Prime  |  p  ||  A }
) ) ) )
109imp 445 1  |-  ( ( A  e.  NN  /\  ( mmu `  A )  =/=  0 )  -> 
( mmu `  A
)  =  ( -u
1 ^ ( # `  { p  e.  Prime  |  p  ||  A }
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   {crab 2916   ifcif 4086   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937   -ucneg 10267   NNcn 11020   2c2 11070   ^cexp 12860   #chash 13117    || cdvds 14983   Primecprime 15385   mmucmu 24821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-mulcl 9998  ax-i2m1 10004
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-mu 24827
This theorem is referenced by:  mumul  24907  musum  24917
  Copyright terms: Public domain W3C validator