Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpreclem2 Structured version   Visualization version   Unicode version

Theorem finxpreclem2 33227
Description: Lemma for  ^^ ^^ recursion theorems. (Contributed by ML, 17-Oct-2020.)
Assertion
Ref Expression
finxpreclem2  |-  ( ( X  e.  _V  /\  -.  X  e.  U
)  ->  -.  (/)  =  ( ( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) ) `
 <. 1o ,  X >. ) )
Distinct variable groups:    U, n, x    n, X, x

Proof of Theorem finxpreclem2
StepHypRef Expression
1 nfv 1843 . . . . . 6  |-  F/ x
( X  e.  _V  /\ 
-.  X  e.  U
)
2 nfmpt22 6723 . . . . . . . 8  |-  F/_ x
( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) )
3 nfcv 2764 . . . . . . . 8  |-  F/_ x <. 1o ,  X >.
42, 3nffv 6198 . . . . . . 7  |-  F/_ x
( ( n  e. 
om ,  x  e. 
_V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) ) `
 <. 1o ,  X >. )
5 nfcv 2764 . . . . . . 7  |-  F/_ x (/)
64, 5nfne 2894 . . . . . 6  |-  F/ x
( ( n  e. 
om ,  x  e. 
_V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) ) `
 <. 1o ,  X >. )  =/=  (/)
71, 6nfim 1825 . . . . 5  |-  F/ x
( ( X  e. 
_V  /\  -.  X  e.  U )  ->  (
( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) ) `
 <. 1o ,  X >. )  =/=  (/) )
8 nfv 1843 . . . . . . 7  |-  F/ n  x  =  X
9 nfv 1843 . . . . . . . 8  |-  F/ n
( X  e.  _V  /\ 
-.  X  e.  U
)
10 nfmpt21 6722 . . . . . . . . . 10  |-  F/_ n
( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) )
11 nfcv 2764 . . . . . . . . . 10  |-  F/_ n <. 1o ,  X >.
1210, 11nffv 6198 . . . . . . . . 9  |-  F/_ n
( ( n  e. 
om ,  x  e. 
_V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) ) `
 <. 1o ,  X >. )
13 nfcv 2764 . . . . . . . . 9  |-  F/_ n (/)
1412, 13nfne 2894 . . . . . . . 8  |-  F/ n
( ( n  e. 
om ,  x  e. 
_V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) ) `
 <. 1o ,  X >. )  =/=  (/)
159, 14nfim 1825 . . . . . . 7  |-  F/ n
( ( X  e. 
_V  /\  -.  X  e.  U )  ->  (
( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) ) `
 <. 1o ,  X >. )  =/=  (/) )
168, 15nfim 1825 . . . . . 6  |-  F/ n
( x  =  X  ->  ( ( X  e.  _V  /\  -.  X  e.  U )  ->  ( ( n  e. 
om ,  x  e. 
_V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) ) `
 <. 1o ,  X >. )  =/=  (/) ) )
17 1onn 7719 . . . . . . 7  |-  1o  e.  om
1817elexi 3213 . . . . . 6  |-  1o  e.  _V
19 df-ov 6653 . . . . . . . . . 10  |-  ( 1o ( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) ) X )  =  ( ( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) ) `
 <. 1o ,  X >. )
20 0ex 4790 . . . . . . . . . . . . . . . 16  |-  (/)  e.  _V
21 opex 4932 . . . . . . . . . . . . . . . . 17  |-  <. U. n ,  ( 1st `  x
) >.  e.  _V
22 opex 4932 . . . . . . . . . . . . . . . . 17  |-  <. n ,  x >.  e.  _V
2321, 22ifex 4156 . . . . . . . . . . . . . . . 16  |-  if ( x  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. )  e.  _V
2420, 23ifex 4156 . . . . . . . . . . . . . . 15  |-  if ( ( n  =  1o 
/\  x  e.  U
) ,  (/) ,  if ( x  e.  ( _V  X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) )  e. 
_V
2524csbex 4793 . . . . . . . . . . . . . 14  |-  [_ X  /  x ]_ if ( ( n  =  1o 
/\  x  e.  U
) ,  (/) ,  if ( x  e.  ( _V  X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) )  e. 
_V
2625csbex 4793 . . . . . . . . . . . . 13  |-  [_ 1o  /  n ]_ [_ X  /  x ]_ if ( ( n  =  1o 
/\  x  e.  U
) ,  (/) ,  if ( x  e.  ( _V  X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) )  e. 
_V
27 eqid 2622 . . . . . . . . . . . . . 14  |-  ( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) )  =  ( n  e. 
om ,  x  e. 
_V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) )
2827ovmpt2s 6784 . . . . . . . . . . . . 13  |-  ( ( 1o  e.  om  /\  X  e.  _V  /\  [_ 1o  /  n ]_ [_ X  /  x ]_ if ( ( n  =  1o 
/\  x  e.  U
) ,  (/) ,  if ( x  e.  ( _V  X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) )  e. 
_V )  ->  ( 1o ( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) ) X )  =  [_ 1o  /  n ]_ [_ X  /  x ]_ if ( ( n  =  1o 
/\  x  e.  U
) ,  (/) ,  if ( x  e.  ( _V  X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) )
2917, 26, 28mp3an13 1415 . . . . . . . . . . . 12  |-  ( X  e.  _V  ->  ( 1o ( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) ) X )  =  [_ 1o  /  n ]_ [_ X  /  x ]_ if ( ( n  =  1o 
/\  x  e.  U
) ,  (/) ,  if ( x  e.  ( _V  X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) )
3029adantr 481 . . . . . . . . . . 11  |-  ( ( X  e.  _V  /\  ( -.  X  e.  U  /\  ( n  =  1o  /\  x  =  X ) ) )  ->  ( 1o ( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o 
/\  x  e.  U
) ,  (/) ,  if ( x  e.  ( _V  X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) ) X )  =  [_ 1o  /  n ]_ [_ X  /  x ]_ if ( ( n  =  1o 
/\  x  e.  U
) ,  (/) ,  if ( x  e.  ( _V  X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) )
31 csbeq1a 3542 . . . . . . . . . . . . . . 15  |-  ( x  =  X  ->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) )  = 
[_ X  /  x ]_ if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) )
32 csbeq1a 3542 . . . . . . . . . . . . . . 15  |-  ( n  =  1o  ->  [_ X  /  x ]_ if ( ( n  =  1o 
/\  x  e.  U
) ,  (/) ,  if ( x  e.  ( _V  X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) )  = 
[_ 1o  /  n ]_ [_ X  /  x ]_ if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) )
3331, 32sylan9eqr 2678 . . . . . . . . . . . . . 14  |-  ( ( n  =  1o  /\  x  =  X )  ->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) )  = 
[_ 1o  /  n ]_ [_ X  /  x ]_ if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) )
3433adantl 482 . . . . . . . . . . . . 13  |-  ( ( -.  X  e.  U  /\  ( n  =  1o 
/\  x  =  X ) )  ->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) )  = 
[_ 1o  /  n ]_ [_ X  /  x ]_ if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) )
35 eleq1 2689 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  X  ->  (
x  e.  U  <->  X  e.  U ) )
3635notbid 308 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  X  ->  ( -.  x  e.  U  <->  -.  X  e.  U ) )
3736biimprcd 240 . . . . . . . . . . . . . . . . . 18  |-  ( -.  X  e.  U  -> 
( x  =  X  ->  -.  x  e.  U ) )
38 pm3.14 523 . . . . . . . . . . . . . . . . . . 19  |-  ( ( -.  n  =  1o  \/  -.  x  e.  U )  ->  -.  ( n  =  1o  /\  x  e.  U ) )
3938olcs 410 . . . . . . . . . . . . . . . . . 18  |-  ( -.  x  e.  U  ->  -.  ( n  =  1o 
/\  x  e.  U
) )
4037, 39syl6 35 . . . . . . . . . . . . . . . . 17  |-  ( -.  X  e.  U  -> 
( x  =  X  ->  -.  ( n  =  1o  /\  x  e.  U ) ) )
41 iffalse 4095 . . . . . . . . . . . . . . . . 17  |-  ( -.  ( n  =  1o 
/\  x  e.  U
)  ->  if (
( n  =  1o 
/\  x  e.  U
) ,  (/) ,  if ( x  e.  ( _V  X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) )  =  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) )
4240, 41syl6 35 . . . . . . . . . . . . . . . 16  |-  ( -.  X  e.  U  -> 
( x  =  X  ->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) )  =  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) )
4342imp 445 . . . . . . . . . . . . . . 15  |-  ( ( -.  X  e.  U  /\  x  =  X
)  ->  if (
( n  =  1o 
/\  x  e.  U
) ,  (/) ,  if ( x  e.  ( _V  X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) )  =  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) )
44 ifeqor 4132 . . . . . . . . . . . . . . . . 17  |-  ( if ( x  e.  ( _V  X.  U ) ,  <. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. )  =  <. U. n ,  ( 1st `  x ) >.  \/  if ( x  e.  ( _V  X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. )  =  <. n ,  x >. )
45 vuniex 6954 . . . . . . . . . . . . . . . . . . . . 21  |-  U. n  e.  _V
46 fvex 6201 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 1st `  x )  e.  _V
4745, 46opnzi 4943 . . . . . . . . . . . . . . . . . . . 20  |-  <. U. n ,  ( 1st `  x
) >.  =/=  (/)
4847neii 2796 . . . . . . . . . . . . . . . . . . 19  |-  -.  <. U. n ,  ( 1st `  x ) >.  =  (/)
49 eqeq1 2626 . . . . . . . . . . . . . . . . . . 19  |-  ( if ( x  e.  ( _V  X.  U ) ,  <. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. )  =  <. U. n ,  ( 1st `  x ) >.  ->  ( if ( x  e.  ( _V  X.  U ) ,  <. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. )  =  (/)  <->  <. U. n ,  ( 1st `  x ) >.  =  (/) ) )
5048, 49mtbiri 317 . . . . . . . . . . . . . . . . . 18  |-  ( if ( x  e.  ( _V  X.  U ) ,  <. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. )  =  <. U. n ,  ( 1st `  x ) >.  ->  -.  if ( x  e.  ( _V  X.  U ) ,  <. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. )  =  (/) )
51 vex 3203 . . . . . . . . . . . . . . . . . . . . 21  |-  n  e. 
_V
52 vex 3203 . . . . . . . . . . . . . . . . . . . . 21  |-  x  e. 
_V
5351, 52opnzi 4943 . . . . . . . . . . . . . . . . . . . 20  |-  <. n ,  x >.  =/=  (/)
5453neii 2796 . . . . . . . . . . . . . . . . . . 19  |-  -.  <. n ,  x >.  =  (/)
55 eqeq1 2626 . . . . . . . . . . . . . . . . . . 19  |-  ( if ( x  e.  ( _V  X.  U ) ,  <. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. )  =  <. n ,  x >.  ->  ( if ( x  e.  ( _V  X.  U ) ,  <. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. )  =  (/)  <->  <. n ,  x >.  =  (/) ) )
5654, 55mtbiri 317 . . . . . . . . . . . . . . . . . 18  |-  ( if ( x  e.  ( _V  X.  U ) ,  <. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. )  =  <. n ,  x >.  ->  -.  if ( x  e.  ( _V  X.  U ) ,  <. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. )  =  (/) )
5750, 56jaoi 394 . . . . . . . . . . . . . . . . 17  |-  ( ( if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. )  =  <. U. n ,  ( 1st `  x ) >.  \/  if ( x  e.  ( _V  X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. )  =  <. n ,  x >. )  ->  -.  if ( x  e.  ( _V  X.  U ) ,  <. U. n ,  ( 1st `  x ) >. ,  <. n ,  x >. )  =  (/) )
5844, 57mp1i 13 . . . . . . . . . . . . . . . 16  |-  ( ( -.  X  e.  U  /\  x  =  X
)  ->  -.  if ( x  e.  ( _V  X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. )  =  (/) )
5958neqned 2801 . . . . . . . . . . . . . . 15  |-  ( ( -.  X  e.  U  /\  x  =  X
)  ->  if (
x  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. )  =/=  (/) )
6043, 59eqnetrd 2861 . . . . . . . . . . . . . 14  |-  ( ( -.  X  e.  U  /\  x  =  X
)  ->  if (
( n  =  1o 
/\  x  e.  U
) ,  (/) ,  if ( x  e.  ( _V  X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) )  =/=  (/) )
6160adantrl 752 . . . . . . . . . . . . 13  |-  ( ( -.  X  e.  U  /\  ( n  =  1o 
/\  x  =  X ) )  ->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) )  =/=  (/) )
6234, 61eqnetrrd 2862 . . . . . . . . . . . 12  |-  ( ( -.  X  e.  U  /\  ( n  =  1o 
/\  x  =  X ) )  ->  [_ 1o  /  n ]_ [_ X  /  x ]_ if ( ( n  =  1o 
/\  x  e.  U
) ,  (/) ,  if ( x  e.  ( _V  X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) )  =/=  (/) )
6362adantl 482 . . . . . . . . . . 11  |-  ( ( X  e.  _V  /\  ( -.  X  e.  U  /\  ( n  =  1o  /\  x  =  X ) ) )  ->  [_ 1o  /  n ]_ [_ X  /  x ]_ if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) )  =/=  (/) )
6430, 63eqnetrd 2861 . . . . . . . . . 10  |-  ( ( X  e.  _V  /\  ( -.  X  e.  U  /\  ( n  =  1o  /\  x  =  X ) ) )  ->  ( 1o ( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o 
/\  x  e.  U
) ,  (/) ,  if ( x  e.  ( _V  X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) ) X )  =/=  (/) )
6519, 64syl5eqner 2869 . . . . . . . . 9  |-  ( ( X  e.  _V  /\  ( -.  X  e.  U  /\  ( n  =  1o  /\  x  =  X ) ) )  ->  ( ( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) ) `
 <. 1o ,  X >. )  =/=  (/) )
6665ancom2s 844 . . . . . . . 8  |-  ( ( X  e.  _V  /\  ( ( n  =  1o  /\  x  =  X )  /\  -.  X  e.  U )
)  ->  ( (
n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o 
/\  x  e.  U
) ,  (/) ,  if ( x  e.  ( _V  X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) ) `
 <. 1o ,  X >. )  =/=  (/) )
6766an12s 843 . . . . . . 7  |-  ( ( ( n  =  1o 
/\  x  =  X )  /\  ( X  e.  _V  /\  -.  X  e.  U )
)  ->  ( (
n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o 
/\  x  e.  U
) ,  (/) ,  if ( x  e.  ( _V  X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) ) `
 <. 1o ,  X >. )  =/=  (/) )
6867exp31 630 . . . . . 6  |-  ( n  =  1o  ->  (
x  =  X  -> 
( ( X  e. 
_V  /\  -.  X  e.  U )  ->  (
( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) ) `
 <. 1o ,  X >. )  =/=  (/) ) ) )
6916, 18, 68vtoclef 3281 . . . . 5  |-  ( x  =  X  ->  (
( X  e.  _V  /\ 
-.  X  e.  U
)  ->  ( (
n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o 
/\  x  e.  U
) ,  (/) ,  if ( x  e.  ( _V  X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) ) `
 <. 1o ,  X >. )  =/=  (/) ) )
707, 69vtoclefex 33181 . . . 4  |-  ( X  e.  _V  ->  (
( X  e.  _V  /\ 
-.  X  e.  U
)  ->  ( (
n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o 
/\  x  e.  U
) ,  (/) ,  if ( x  e.  ( _V  X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) ) `
 <. 1o ,  X >. )  =/=  (/) ) )
7170anabsi5 858 . . 3  |-  ( ( X  e.  _V  /\  -.  X  e.  U
)  ->  ( (
n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o 
/\  x  e.  U
) ,  (/) ,  if ( x  e.  ( _V  X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) ) `
 <. 1o ,  X >. )  =/=  (/) )
7271necomd 2849 . 2  |-  ( ( X  e.  _V  /\  -.  X  e.  U
)  ->  (/)  =/=  (
( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) ) `
 <. 1o ,  X >. ) )
7372neneqd 2799 1  |-  ( ( X  e.  _V  /\  -.  X  e.  U
)  ->  -.  (/)  =  ( ( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) ) `
 <. 1o ,  X >. ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   [_csb 3533   (/)c0 3915   ifcif 4086   <.cop 4183   U.cuni 4436    X. cxp 5112   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   omcom 7065   1stc1st 7166   1oc1o 7553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1o 7560
This theorem is referenced by:  finxp1o  33229
  Copyright terms: Public domain W3C validator