MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  initoval Structured version   Visualization version   Unicode version

Theorem initoval 16647
Description: The value of the initial object function, i.e. the set of all initial objects of a category. (Contributed by AV, 3-Apr-2020.)
Hypotheses
Ref Expression
initoval.c  |-  ( ph  ->  C  e.  Cat )
initoval.b  |-  B  =  ( Base `  C
)
initoval.h  |-  H  =  ( Hom  `  C
)
Assertion
Ref Expression
initoval  |-  ( ph  ->  (InitO `  C )  =  { a  e.  B  |  A. b  e.  B  E! h  h  e.  ( a H b ) } )
Distinct variable groups:    a, b, h    B, a, b    C, a, b, h
Allowed substitution hints:    ph( h, a, b)    B( h)    H( h, a, b)

Proof of Theorem initoval
Dummy variable  c is distinct from all other variables.
StepHypRef Expression
1 df-inito 16641 . . 3  |- InitO  =  ( c  e.  Cat  |->  { a  e.  ( Base `  c )  |  A. b  e.  ( Base `  c ) E! h  h  e.  ( a
( Hom  `  c ) b ) } )
21a1i 11 . 2  |-  ( ph  -> InitO  =  ( c  e. 
Cat  |->  { a  e.  ( Base `  c
)  |  A. b  e.  ( Base `  c
) E! h  h  e.  ( a ( Hom  `  c )
b ) } ) )
3 fveq2 6191 . . . . 5  |-  ( c  =  C  ->  ( Base `  c )  =  ( Base `  C
) )
4 initoval.b . . . . 5  |-  B  =  ( Base `  C
)
53, 4syl6eqr 2674 . . . 4  |-  ( c  =  C  ->  ( Base `  c )  =  B )
6 fveq2 6191 . . . . . . . . 9  |-  ( c  =  C  ->  ( Hom  `  c )  =  ( Hom  `  C
) )
7 initoval.h . . . . . . . . 9  |-  H  =  ( Hom  `  C
)
86, 7syl6eqr 2674 . . . . . . . 8  |-  ( c  =  C  ->  ( Hom  `  c )  =  H )
98oveqd 6667 . . . . . . 7  |-  ( c  =  C  ->  (
a ( Hom  `  c
) b )  =  ( a H b ) )
109eleq2d 2687 . . . . . 6  |-  ( c  =  C  ->  (
h  e.  ( a ( Hom  `  c
) b )  <->  h  e.  ( a H b ) ) )
1110eubidv 2490 . . . . 5  |-  ( c  =  C  ->  ( E! h  h  e.  ( a ( Hom  `  c ) b )  <-> 
E! h  h  e.  ( a H b ) ) )
125, 11raleqbidv 3152 . . . 4  |-  ( c  =  C  ->  ( A. b  e.  ( Base `  c ) E! h  h  e.  ( a ( Hom  `  c
) b )  <->  A. b  e.  B  E! h  h  e.  ( a H b ) ) )
135, 12rabeqbidv 3195 . . 3  |-  ( c  =  C  ->  { a  e.  ( Base `  c
)  |  A. b  e.  ( Base `  c
) E! h  h  e.  ( a ( Hom  `  c )
b ) }  =  { a  e.  B  |  A. b  e.  B  E! h  h  e.  ( a H b ) } )
1413adantl 482 . 2  |-  ( (
ph  /\  c  =  C )  ->  { a  e.  ( Base `  c
)  |  A. b  e.  ( Base `  c
) E! h  h  e.  ( a ( Hom  `  c )
b ) }  =  { a  e.  B  |  A. b  e.  B  E! h  h  e.  ( a H b ) } )
15 initoval.c . 2  |-  ( ph  ->  C  e.  Cat )
16 fvex 6201 . . . . 5  |-  ( Base `  C )  e.  _V
174, 16eqeltri 2697 . . . 4  |-  B  e. 
_V
1817rabex 4813 . . 3  |-  { a  e.  B  |  A. b  e.  B  E! h  h  e.  (
a H b ) }  e.  _V
1918a1i 11 . 2  |-  ( ph  ->  { a  e.  B  |  A. b  e.  B  E! h  h  e.  ( a H b ) }  e.  _V )
202, 14, 15, 19fvmptd 6288 1  |-  ( ph  ->  (InitO `  C )  =  { a  e.  B  |  A. b  e.  B  E! h  h  e.  ( a H b ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   E!weu 2470   A.wral 2912   {crab 2916   _Vcvv 3200    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Hom chom 15952   Catccat 16325  InitOcinito 16638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-inito 16641
This theorem is referenced by:  isinito  16650  isinitoi  16653
  Copyright terms: Public domain W3C validator