Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intopval Structured version   Visualization version   Unicode version

Theorem intopval 41838
Description: The internal (binary) operations for a set. (Contributed by AV, 20-Jan-2020.)
Assertion
Ref Expression
intopval  |-  ( ( M  e.  V  /\  N  e.  W )  ->  ( M intOp  N )  =  ( N  ^m  ( M  X.  M
) ) )

Proof of Theorem intopval
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-intop 41835 . . 3  |- intOp  =  ( m  e.  _V ,  n  e.  _V  |->  ( n  ^m  ( m  X.  m ) ) )
21a1i 11 . 2  |-  ( ( M  e.  V  /\  N  e.  W )  -> intOp  =  ( m  e. 
_V ,  n  e. 
_V  |->  ( n  ^m  ( m  X.  m
) ) ) )
3 simpr 477 . . . 4  |-  ( ( m  =  M  /\  n  =  N )  ->  n  =  N )
4 simpl 473 . . . . 5  |-  ( ( m  =  M  /\  n  =  N )  ->  m  =  M )
54sqxpeqd 5141 . . . 4  |-  ( ( m  =  M  /\  n  =  N )  ->  ( m  X.  m
)  =  ( M  X.  M ) )
63, 5oveq12d 6668 . . 3  |-  ( ( m  =  M  /\  n  =  N )  ->  ( n  ^m  (
m  X.  m ) )  =  ( N  ^m  ( M  X.  M ) ) )
76adantl 482 . 2  |-  ( ( ( M  e.  V  /\  N  e.  W
)  /\  ( m  =  M  /\  n  =  N ) )  -> 
( n  ^m  (
m  X.  m ) )  =  ( N  ^m  ( M  X.  M ) ) )
8 elex 3212 . . 3  |-  ( M  e.  V  ->  M  e.  _V )
98adantr 481 . 2  |-  ( ( M  e.  V  /\  N  e.  W )  ->  M  e.  _V )
10 elex 3212 . . 3  |-  ( N  e.  W  ->  N  e.  _V )
1110adantl 482 . 2  |-  ( ( M  e.  V  /\  N  e.  W )  ->  N  e.  _V )
12 ovexd 6680 . 2  |-  ( ( M  e.  V  /\  N  e.  W )  ->  ( N  ^m  ( M  X.  M ) )  e.  _V )
132, 7, 9, 11, 12ovmpt2d 6788 1  |-  ( ( M  e.  V  /\  N  e.  W )  ->  ( M intOp  N )  =  ( N  ^m  ( M  X.  M
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    X. cxp 5112  (class class class)co 6650    |-> cmpt2 6652    ^m cmap 7857   intOp cintop 41832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-intop 41835
This theorem is referenced by:  intop  41839  clintopval  41840
  Copyright terms: Public domain W3C validator