MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inuni Structured version   Visualization version   Unicode version

Theorem inuni 4826
Description: The intersection of a union  U. A with a class  B is equal to the union of the intersections of each element of  A with  B. (Contributed by FL, 24-Mar-2007.)
Assertion
Ref Expression
inuni  |-  ( U. A  i^i  B )  = 
U. { x  |  E. y  e.  A  x  =  ( y  i^i  B ) }
Distinct variable groups:    x, A, y    x, B, y

Proof of Theorem inuni
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eluni2 4440 . . . . 5  |-  ( z  e.  U. A  <->  E. y  e.  A  z  e.  y )
21anbi1i 731 . . . 4  |-  ( ( z  e.  U. A  /\  z  e.  B
)  <->  ( E. y  e.  A  z  e.  y  /\  z  e.  B
) )
3 elin 3796 . . . 4  |-  ( z  e.  ( U. A  i^i  B )  <->  ( z  e.  U. A  /\  z  e.  B ) )
4 ancom 466 . . . . . . . 8  |-  ( ( z  e.  x  /\  E. y  e.  A  x  =  ( y  i^i 
B ) )  <->  ( E. y  e.  A  x  =  ( y  i^i 
B )  /\  z  e.  x ) )
5 r19.41v 3089 . . . . . . . 8  |-  ( E. y  e.  A  ( x  =  ( y  i^i  B )  /\  z  e.  x )  <->  ( E. y  e.  A  x  =  ( y  i^i  B )  /\  z  e.  x ) )
64, 5bitr4i 267 . . . . . . 7  |-  ( ( z  e.  x  /\  E. y  e.  A  x  =  ( y  i^i 
B ) )  <->  E. y  e.  A  ( x  =  ( y  i^i 
B )  /\  z  e.  x ) )
76exbii 1774 . . . . . 6  |-  ( E. x ( z  e.  x  /\  E. y  e.  A  x  =  ( y  i^i  B
) )  <->  E. x E. y  e.  A  ( x  =  (
y  i^i  B )  /\  z  e.  x
) )
8 rexcom4 3225 . . . . . 6  |-  ( E. y  e.  A  E. x ( x  =  ( y  i^i  B
)  /\  z  e.  x )  <->  E. x E. y  e.  A  ( x  =  (
y  i^i  B )  /\  z  e.  x
) )
97, 8bitr4i 267 . . . . 5  |-  ( E. x ( z  e.  x  /\  E. y  e.  A  x  =  ( y  i^i  B
) )  <->  E. y  e.  A  E. x
( x  =  ( y  i^i  B )  /\  z  e.  x
) )
10 vex 3203 . . . . . . . . . 10  |-  y  e. 
_V
1110inex1 4799 . . . . . . . . 9  |-  ( y  i^i  B )  e. 
_V
12 eleq2 2690 . . . . . . . . 9  |-  ( x  =  ( y  i^i 
B )  ->  (
z  e.  x  <->  z  e.  ( y  i^i  B
) ) )
1311, 12ceqsexv 3242 . . . . . . . 8  |-  ( E. x ( x  =  ( y  i^i  B
)  /\  z  e.  x )  <->  z  e.  ( y  i^i  B
) )
14 elin 3796 . . . . . . . 8  |-  ( z  e.  ( y  i^i 
B )  <->  ( z  e.  y  /\  z  e.  B ) )
1513, 14bitri 264 . . . . . . 7  |-  ( E. x ( x  =  ( y  i^i  B
)  /\  z  e.  x )  <->  ( z  e.  y  /\  z  e.  B ) )
1615rexbii 3041 . . . . . 6  |-  ( E. y  e.  A  E. x ( x  =  ( y  i^i  B
)  /\  z  e.  x )  <->  E. y  e.  A  ( z  e.  y  /\  z  e.  B ) )
17 r19.41v 3089 . . . . . 6  |-  ( E. y  e.  A  ( z  e.  y  /\  z  e.  B )  <->  ( E. y  e.  A  z  e.  y  /\  z  e.  B )
)
1816, 17bitri 264 . . . . 5  |-  ( E. y  e.  A  E. x ( x  =  ( y  i^i  B
)  /\  z  e.  x )  <->  ( E. y  e.  A  z  e.  y  /\  z  e.  B ) )
199, 18bitri 264 . . . 4  |-  ( E. x ( z  e.  x  /\  E. y  e.  A  x  =  ( y  i^i  B
) )  <->  ( E. y  e.  A  z  e.  y  /\  z  e.  B ) )
202, 3, 193bitr4i 292 . . 3  |-  ( z  e.  ( U. A  i^i  B )  <->  E. x
( z  e.  x  /\  E. y  e.  A  x  =  ( y  i^i  B ) ) )
21 eluniab 4447 . . 3  |-  ( z  e.  U. { x  |  E. y  e.  A  x  =  ( y  i^i  B ) }  <->  E. x
( z  e.  x  /\  E. y  e.  A  x  =  ( y  i^i  B ) ) )
2220, 21bitr4i 267 . 2  |-  ( z  e.  ( U. A  i^i  B )  <->  z  e.  U. { x  |  E. y  e.  A  x  =  ( y  i^i 
B ) } )
2322eqriv 2619 1  |-  ( U. A  i^i  B )  = 
U. { x  |  E. y  e.  A  x  =  ( y  i^i  B ) }
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   E.wrex 2913    i^i cin 3573   U.cuni 4436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-in 3581  df-uni 4437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator