MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intabs Structured version   Visualization version   Unicode version

Theorem intabs 4825
Description: Absorption of a redundant conjunct in the intersection of a class abstraction. (Contributed by NM, 3-Jul-2005.)
Hypotheses
Ref Expression
intabs.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
intabs.2  |-  ( x  =  |^| { y  |  ps }  ->  (
ph 
<->  ch ) )
intabs.3  |-  ( |^| { y  |  ps }  C_  A  /\  ch )
Assertion
Ref Expression
intabs  |-  |^| { x  |  ( x  C_  A  /\  ph ) }  =  |^| { x  |  ph }
Distinct variable groups:    x, y    x, A    ph, y    ps, x    ch, x
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    A( y)

Proof of Theorem intabs
StepHypRef Expression
1 sseq1 3626 . . . . . 6  |-  ( x  =  |^| { y  |  ps }  ->  ( x  C_  A  <->  |^| { y  |  ps }  C_  A ) )
2 intabs.2 . . . . . 6  |-  ( x  =  |^| { y  |  ps }  ->  (
ph 
<->  ch ) )
31, 2anbi12d 747 . . . . 5  |-  ( x  =  |^| { y  |  ps }  ->  ( ( x  C_  A  /\  ph )  <->  ( |^| { y  |  ps }  C_  A  /\  ch )
) )
4 intabs.3 . . . . 5  |-  ( |^| { y  |  ps }  C_  A  /\  ch )
53, 4intmin3 4505 . . . 4  |-  ( |^| { y  |  ps }  e.  _V  ->  |^| { x  |  ( x  C_  A  /\  ph ) } 
C_  |^| { y  |  ps } )
6 intnex 4821 . . . . 5  |-  ( -. 
|^| { y  |  ps }  e.  _V  <->  |^| { y  |  ps }  =  _V )
7 ssv 3625 . . . . . 6  |-  |^| { x  |  ( x  C_  A  /\  ph ) } 
C_  _V
8 sseq2 3627 . . . . . 6  |-  ( |^| { y  |  ps }  =  _V  ->  ( |^| { x  |  ( x 
C_  A  /\  ph ) }  C_  |^| { y  |  ps }  <->  |^| { x  |  ( x  C_  A  /\  ph ) } 
C_  _V ) )
97, 8mpbiri 248 . . . . 5  |-  ( |^| { y  |  ps }  =  _V  ->  |^| { x  |  ( x  C_  A  /\  ph ) } 
C_  |^| { y  |  ps } )
106, 9sylbi 207 . . . 4  |-  ( -. 
|^| { y  |  ps }  e.  _V  ->  |^|
{ x  |  ( x  C_  A  /\  ph ) }  C_  |^| { y  |  ps } )
115, 10pm2.61i 176 . . 3  |-  |^| { x  |  ( x  C_  A  /\  ph ) } 
C_  |^| { y  |  ps }
12 intabs.1 . . . . 5  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
1312cbvabv 2747 . . . 4  |-  { x  |  ph }  =  {
y  |  ps }
1413inteqi 4479 . . 3  |-  |^| { x  |  ph }  =  |^| { y  |  ps }
1511, 14sseqtr4i 3638 . 2  |-  |^| { x  |  ( x  C_  A  /\  ph ) } 
C_  |^| { x  | 
ph }
16 simpr 477 . . . 4  |-  ( ( x  C_  A  /\  ph )  ->  ph )
1716ss2abi 3674 . . 3  |-  { x  |  ( x  C_  A  /\  ph ) } 
C_  { x  | 
ph }
18 intss 4498 . . 3  |-  ( { x  |  ( x 
C_  A  /\  ph ) }  C_  { x  |  ph }  ->  |^| { x  |  ph }  C_  |^| { x  |  ( x  C_  A  /\  ph ) } )
1917, 18ax-mp 5 . 2  |-  |^| { x  |  ph }  C_  |^| { x  |  ( x  C_  A  /\  ph ) }
2015, 19eqssi 3619 1  |-  |^| { x  |  ( x  C_  A  /\  ph ) }  =  |^| { x  |  ph }
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   _Vcvv 3200    C_ wss 3574   |^|cint 4475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-int 4476
This theorem is referenced by:  dfnn3  11034
  Copyright terms: Public domain W3C validator