Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inxp2 Structured version   Visualization version   Unicode version

Theorem inxp2 34129
Description: Intersection with a Cartesian product. (Contributed by Peter Mazsa, 18-Jul-2019.)
Assertion
Ref Expression
inxp2  |-  ( R  i^i  ( A  X.  B ) )  =  { <. x ,  y
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  x R y ) }
Distinct variable groups:    x, A, y    x, B, y    x, R, y

Proof of Theorem inxp2
StepHypRef Expression
1 relinxp 34069 . . 3  |-  Rel  ( R  i^i  ( A  X.  B ) )
2 dfrel4v 5584 . . 3  |-  ( Rel  ( R  i^i  ( A  X.  B ) )  <-> 
( R  i^i  ( A  X.  B ) )  =  { <. x ,  y >.  |  x ( R  i^i  ( A  X.  B ) ) y } )
31, 2mpbi 220 . 2  |-  ( R  i^i  ( A  X.  B ) )  =  { <. x ,  y
>.  |  x ( R  i^i  ( A  X.  B ) ) y }
4 brinxp2ALTV 34034 . . 3  |-  ( x ( R  i^i  ( A  X.  B ) ) y  <->  ( ( x  e.  A  /\  y  e.  B )  /\  x R y ) )
54opabbii 4717 . 2  |-  { <. x ,  y >.  |  x ( R  i^i  ( A  X.  B ) ) y }  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  x R y ) }
63, 5eqtri 2644 1  |-  ( R  i^i  ( A  X.  B ) )  =  { <. x ,  y
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  x R y ) }
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483    e. wcel 1990    i^i cin 3573   class class class wbr 4653   {copab 4712    X. cxp 5112   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator