Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inxpss Structured version   Visualization version   Unicode version

Theorem inxpss 34082
Description: Two ways to say that an intersection with a Cartesian product is a subclass. (Contributed by Peter Mazsa, 16-Jul-2019.)
Assertion
Ref Expression
inxpss  |-  ( ( R  i^i  ( A  X.  B ) ) 
C_  S  <->  A. x  e.  A  A. y  e.  B  ( x R y  ->  x S y ) )
Distinct variable groups:    x, A, y    x, B, y    x, R, y    x, S, y

Proof of Theorem inxpss
StepHypRef Expression
1 brinxp2ALTV 34034 . . . . 5  |-  ( x ( R  i^i  ( A  X.  B ) ) y  <->  ( ( x  e.  A  /\  y  e.  B )  /\  x R y ) )
21imbi1i 339 . . . 4  |-  ( ( x ( R  i^i  ( A  X.  B
) ) y  ->  x S y )  <->  ( (
( x  e.  A  /\  y  e.  B
)  /\  x R
y )  ->  x S y ) )
3 impexp 462 . . . 4  |-  ( ( ( ( x  e.  A  /\  y  e.  B )  /\  x R y )  ->  x S y )  <->  ( (
x  e.  A  /\  y  e.  B )  ->  ( x R y  ->  x S y ) ) )
42, 3bitri 264 . . 3  |-  ( ( x ( R  i^i  ( A  X.  B
) ) y  ->  x S y )  <->  ( (
x  e.  A  /\  y  e.  B )  ->  ( x R y  ->  x S y ) ) )
542albii 1748 . 2  |-  ( A. x A. y ( x ( R  i^i  ( A  X.  B ) ) y  ->  x S
y )  <->  A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  (
x R y  ->  x S y ) ) )
6 relinxp 34069 . . 3  |-  Rel  ( R  i^i  ( A  X.  B ) )
7 ssrel3 34067 . . 3  |-  ( Rel  ( R  i^i  ( A  X.  B ) )  ->  ( ( R  i^i  ( A  X.  B ) )  C_  S 
<-> 
A. x A. y
( x ( R  i^i  ( A  X.  B ) ) y  ->  x S y ) ) )
86, 7ax-mp 5 . 2  |-  ( ( R  i^i  ( A  X.  B ) ) 
C_  S  <->  A. x A. y ( x ( R  i^i  ( A  X.  B ) ) y  ->  x S
y ) )
9 r2al 2939 . 2  |-  ( A. x  e.  A  A. y  e.  B  (
x R y  ->  x S y )  <->  A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  (
x R y  ->  x S y ) ) )
105, 8, 93bitr4i 292 1  |-  ( ( R  i^i  ( A  X.  B ) ) 
C_  S  <->  A. x  e.  A  A. y  e.  B  ( x R y  ->  x S y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    e. wcel 1990   A.wral 2912    i^i cin 3573    C_ wss 3574   class class class wbr 4653    X. cxp 5112   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121
This theorem is referenced by:  idinxpss  34083
  Copyright terms: Public domain W3C validator