| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iotasbc | Structured version Visualization version Unicode version | ||
| Description: Definition *14.01 in [WhiteheadRussell] p. 184. In Principia
Mathematica, Russell and Whitehead define |
| Ref | Expression |
|---|---|
| iotasbc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc5 3460 |
. 2
| |
| 2 | iotaexeu 38619 |
. . . . . . 7
| |
| 3 | eueq 3378 |
. . . . . . 7
| |
| 4 | 2, 3 | sylib 208 |
. . . . . 6
|
| 5 | df-eu 2474 |
. . . . . . 7
| |
| 6 | iotaval 5862 |
. . . . . . . . . 10
| |
| 7 | 6 | eqcomd 2628 |
. . . . . . . . 9
|
| 8 | 7 | ancri 575 |
. . . . . . . 8
|
| 9 | 8 | eximi 1762 |
. . . . . . 7
|
| 10 | 5, 9 | sylbi 207 |
. . . . . 6
|
| 11 | eupick 2536 |
. . . . . 6
| |
| 12 | 4, 10, 11 | syl2anc 693 |
. . . . 5
|
| 13 | 12, 7 | impbid1 215 |
. . . 4
|
| 14 | 13 | anbi1d 741 |
. . 3
|
| 15 | 14 | exbidv 1850 |
. 2
|
| 16 | 1, 15 | syl5bb 272 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-v 3202 df-sbc 3436 df-un 3579 df-sn 4178 df-pr 4180 df-uni 4437 df-iota 5851 |
| This theorem is referenced by: iotasbc2 38621 iotavalb 38631 fvsb 38656 |
| Copyright terms: Public domain | W3C validator |