Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iotasbc Structured version   Visualization version   Unicode version

Theorem iotasbc 38620
Description: Definition *14.01 in [WhiteheadRussell] p. 184. In Principia Mathematica, Russell and Whitehead define  iota in terms of a function of  ( iota x ph ). Their definition differs in that a function of  ( iota x ph ) evaluates to "false" when there isn't a single  x that satisfies  ph. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotasbc  |-  ( E! x ph  ->  ( [. ( iota x ph )  /  y ]. ps  <->  E. y ( A. x
( ph  <->  x  =  y
)  /\  ps )
) )
Distinct variable groups:    x, y    ph, y
Allowed substitution hints:    ph( x)    ps( x, y)

Proof of Theorem iotasbc
StepHypRef Expression
1 sbc5 3460 . 2  |-  ( [. ( iota x ph )  /  y ]. ps  <->  E. y ( y  =  ( iota x ph )  /\  ps ) )
2 iotaexeu 38619 . . . . . . 7  |-  ( E! x ph  ->  ( iota x ph )  e. 
_V )
3 eueq 3378 . . . . . . 7  |-  ( ( iota x ph )  e.  _V  <->  E! y  y  =  ( iota x ph ) )
42, 3sylib 208 . . . . . 6  |-  ( E! x ph  ->  E! y  y  =  ( iota x ph ) )
5 df-eu 2474 . . . . . . 7  |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
6 iotaval 5862 . . . . . . . . . 10  |-  ( A. x ( ph  <->  x  =  y )  ->  ( iota x ph )  =  y )
76eqcomd 2628 . . . . . . . . 9  |-  ( A. x ( ph  <->  x  =  y )  ->  y  =  ( iota x ph ) )
87ancri 575 . . . . . . . 8  |-  ( A. x ( ph  <->  x  =  y )  ->  (
y  =  ( iota
x ph )  /\  A. x ( ph  <->  x  =  y ) ) )
98eximi 1762 . . . . . . 7  |-  ( E. y A. x (
ph 
<->  x  =  y )  ->  E. y ( y  =  ( iota x ph )  /\  A. x
( ph  <->  x  =  y
) ) )
105, 9sylbi 207 . . . . . 6  |-  ( E! x ph  ->  E. y
( y  =  ( iota x ph )  /\  A. x ( ph  <->  x  =  y ) ) )
11 eupick 2536 . . . . . 6  |-  ( ( E! y  y  =  ( iota x ph )  /\  E. y ( y  =  ( iota
x ph )  /\  A. x ( ph  <->  x  =  y ) ) )  ->  ( y  =  ( iota x ph )  ->  A. x ( ph  <->  x  =  y ) ) )
124, 10, 11syl2anc 693 . . . . 5  |-  ( E! x ph  ->  (
y  =  ( iota
x ph )  ->  A. x
( ph  <->  x  =  y
) ) )
1312, 7impbid1 215 . . . 4  |-  ( E! x ph  ->  (
y  =  ( iota
x ph )  <->  A. x
( ph  <->  x  =  y
) ) )
1413anbi1d 741 . . 3  |-  ( E! x ph  ->  (
( y  =  ( iota x ph )  /\  ps )  <->  ( A. x ( ph  <->  x  =  y )  /\  ps ) ) )
1514exbidv 1850 . 2  |-  ( E! x ph  ->  ( E. y ( y  =  ( iota x ph )  /\  ps )  <->  E. y
( A. x (
ph 
<->  x  =  y )  /\  ps ) ) )
161, 15syl5bb 272 1  |-  ( E! x ph  ->  ( [. ( iota x ph )  /  y ]. ps  <->  E. y ( A. x
( ph  <->  x  =  y
)  /\  ps )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   E!weu 2470   _Vcvv 3200   [.wsbc 3435   iotacio 5849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-v 3202  df-sbc 3436  df-un 3579  df-sn 4178  df-pr 4180  df-uni 4437  df-iota 5851
This theorem is referenced by:  iotasbc2  38621  iotavalb  38631  fvsb  38656
  Copyright terms: Public domain W3C validator