| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iotavalb | Structured version Visualization version Unicode version | ||
| Description: Theorem *14.202 in [WhiteheadRussell] p. 189. A biconditional version of iotaval 5862. (Contributed by Andrew Salmon, 11-Jul-2011.) |
| Ref | Expression |
|---|---|
| iotavalb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotaval 5862 |
. 2
| |
| 2 | iotasbc 38620 |
. . . 4
| |
| 3 | iotaexeu 38619 |
. . . . 5
| |
| 4 | eqsbc3 3475 |
. . . . 5
| |
| 5 | 3, 4 | syl 17 |
. . . 4
|
| 6 | 2, 5 | bitr3d 270 |
. . 3
|
| 7 | equequ2 1953 |
. . . . . . 7
| |
| 8 | 7 | bibi2d 332 |
. . . . . 6
|
| 9 | 8 | albidv 1849 |
. . . . 5
|
| 10 | 9 | biimpac 503 |
. . . 4
|
| 11 | 10 | exlimiv 1858 |
. . 3
|
| 12 | 6, 11 | syl6bir 244 |
. 2
|
| 13 | 1, 12 | impbid2 216 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-v 3202 df-sbc 3436 df-un 3579 df-sn 4178 df-pr 4180 df-uni 4437 df-iota 5851 |
| This theorem is referenced by: iotavalsb 38634 |
| Copyright terms: Public domain | W3C validator |