MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotaval Structured version   Visualization version   Unicode version

Theorem iotaval 5862
Description: Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotaval  |-  ( A. x ( ph  <->  x  =  y )  ->  ( iota x ph )  =  y )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem iotaval
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dfiota2 5852 . 2  |-  ( iota
x ph )  =  U. { z  |  A. x ( ph  <->  x  =  z ) }
2 vex 3203 . . . . . . . 8  |-  y  e. 
_V
3 sbeqalb 3488 . . . . . . . 8  |-  ( y  e.  _V  ->  (
( A. x (
ph 
<->  x  =  y )  /\  A. x (
ph 
<->  x  =  z ) )  ->  y  =  z ) )
42, 3ax-mp 5 . . . . . . 7  |-  ( ( A. x ( ph  <->  x  =  y )  /\  A. x ( ph  <->  x  =  z ) )  -> 
y  =  z )
54ex 450 . . . . . 6  |-  ( A. x ( ph  <->  x  =  y )  ->  ( A. x ( ph  <->  x  =  z )  ->  y  =  z ) )
6 equequ2 1953 . . . . . . . . . 10  |-  ( y  =  z  ->  (
x  =  y  <->  x  =  z ) )
76bibi2d 332 . . . . . . . . 9  |-  ( y  =  z  ->  (
( ph  <->  x  =  y
)  <->  ( ph  <->  x  =  z ) ) )
87biimpd 219 . . . . . . . 8  |-  ( y  =  z  ->  (
( ph  <->  x  =  y
)  ->  ( ph  <->  x  =  z ) ) )
98alimdv 1845 . . . . . . 7  |-  ( y  =  z  ->  ( A. x ( ph  <->  x  =  y )  ->  A. x
( ph  <->  x  =  z
) ) )
109com12 32 . . . . . 6  |-  ( A. x ( ph  <->  x  =  y )  ->  (
y  =  z  ->  A. x ( ph  <->  x  =  z ) ) )
115, 10impbid 202 . . . . 5  |-  ( A. x ( ph  <->  x  =  y )  ->  ( A. x ( ph  <->  x  =  z )  <->  y  =  z ) )
12 equcom 1945 . . . . 5  |-  ( y  =  z  <->  z  =  y )
1311, 12syl6bb 276 . . . 4  |-  ( A. x ( ph  <->  x  =  y )  ->  ( A. x ( ph  <->  x  =  z )  <->  z  =  y ) )
1413alrimiv 1855 . . 3  |-  ( A. x ( ph  <->  x  =  y )  ->  A. z
( A. x (
ph 
<->  x  =  z )  <-> 
z  =  y ) )
15 uniabio 5861 . . 3  |-  ( A. z ( A. x
( ph  <->  x  =  z
)  <->  z  =  y )  ->  U. { z  |  A. x (
ph 
<->  x  =  z ) }  =  y )
1614, 15syl 17 . 2  |-  ( A. x ( ph  <->  x  =  y )  ->  U. {
z  |  A. x
( ph  <->  x  =  z
) }  =  y )
171, 16syl5eq 2668 1  |-  ( A. x ( ph  <->  x  =  y )  ->  ( iota x ph )  =  y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   {cab 2608   _Vcvv 3200   U.cuni 4436   iotacio 5849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-v 3202  df-sbc 3436  df-un 3579  df-sn 4178  df-pr 4180  df-uni 4437  df-iota 5851
This theorem is referenced by:  iotauni  5863  iota1  5865  iotaex  5868  iota4  5869  iota5  5871  iota5f  31606  iotain  38618  iotaexeu  38619  iotasbc  38620  iotaequ  38630  iotavalb  38631  pm14.24  38633  sbiota1  38635
  Copyright terms: Public domain W3C validator