| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotaval | Structured version Visualization version Unicode version | ||
| Description: Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.) |
| Ref | Expression |
|---|---|
| iotaval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiota2 5852 |
. 2
| |
| 2 | vex 3203 |
. . . . . . . 8
| |
| 3 | sbeqalb 3488 |
. . . . . . . 8
| |
| 4 | 2, 3 | ax-mp 5 |
. . . . . . 7
|
| 5 | 4 | ex 450 |
. . . . . 6
|
| 6 | equequ2 1953 |
. . . . . . . . . 10
| |
| 7 | 6 | bibi2d 332 |
. . . . . . . . 9
|
| 8 | 7 | biimpd 219 |
. . . . . . . 8
|
| 9 | 8 | alimdv 1845 |
. . . . . . 7
|
| 10 | 9 | com12 32 |
. . . . . 6
|
| 11 | 5, 10 | impbid 202 |
. . . . 5
|
| 12 | equcom 1945 |
. . . . 5
| |
| 13 | 11, 12 | syl6bb 276 |
. . . 4
|
| 14 | 13 | alrimiv 1855 |
. . 3
|
| 15 | uniabio 5861 |
. . 3
| |
| 16 | 14, 15 | syl 17 |
. 2
|
| 17 | 1, 16 | syl5eq 2668 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-v 3202 df-sbc 3436 df-un 3579 df-sn 4178 df-pr 4180 df-uni 4437 df-iota 5851 |
| This theorem is referenced by: iotauni 5863 iota1 5865 iotaex 5868 iota4 5869 iota5 5871 iota5f 31606 iotain 38618 iotaexeu 38619 iotasbc 38620 iotaequ 38630 iotavalb 38631 pm14.24 38633 sbiota1 38635 |
| Copyright terms: Public domain | W3C validator |