MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isabli Structured version   Visualization version   Unicode version

Theorem isabli 18207
Description: Properties that determine an Abelian group. (Contributed by NM, 4-Sep-2011.)
Hypotheses
Ref Expression
isabli.g  |-  G  e. 
Grp
isabli.b  |-  B  =  ( Base `  G
)
isabli.p  |-  .+  =  ( +g  `  G )
isabli.c  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x  .+  y
)  =  ( y 
.+  x ) )
Assertion
Ref Expression
isabli  |-  G  e. 
Abel
Distinct variable groups:    x, y, B    x, G, y
Allowed substitution hints:    .+ ( x, y)

Proof of Theorem isabli
StepHypRef Expression
1 isabli.g . 2  |-  G  e. 
Grp
2 isabli.c . . 3  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x  .+  y
)  =  ( y 
.+  x ) )
32rgen2a 2977 . 2  |-  A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( y  .+  x )
4 isabli.b . . 3  |-  B  =  ( Base `  G
)
5 isabli.p . . 3  |-  .+  =  ( +g  `  G )
64, 5isabl2 18201 . 2  |-  ( G  e.  Abel  <->  ( G  e. 
Grp  /\  A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( y  .+  x ) ) )
71, 3, 6mpbir2an 955 1  |-  G  e. 
Abel
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   Grpcgrp 17422   Abelcabl 18194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-grp 17425  df-cmn 18195  df-abl 18196
This theorem is referenced by:  cnaddablx  18271  cnaddabl  18272  zaddablx  18275
  Copyright terms: Public domain W3C validator