MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isausgr Structured version   Visualization version   Unicode version

Theorem isausgr 26059
Description: The property of an unordered pair to be an alternatively defined simple graph, defined as a pair (V,E) of a set V (vertex set) and a set of unordered pairs of elements of V (edge set). (Contributed by Alexander van der Vekens, 28-Aug-2017.)
Hypothesis
Ref Expression
ausgr.1  |-  G  =  { <. v ,  e
>.  |  e  C_  { x  e.  ~P v  |  ( # `  x
)  =  2 } }
Assertion
Ref Expression
isausgr  |-  ( ( V  e.  W  /\  E  e.  X )  ->  ( V G E  <-> 
E  C_  { x  e.  ~P V  |  (
# `  x )  =  2 } ) )
Distinct variable groups:    v, e, x, E    e, V, v, x    x, X
Allowed substitution hints:    G( x, v, e)    W( x, v, e)    X( v, e)

Proof of Theorem isausgr
StepHypRef Expression
1 simpr 477 . . 3  |-  ( ( v  =  V  /\  e  =  E )  ->  e  =  E )
2 pweq 4161 . . . . 5  |-  ( v  =  V  ->  ~P v  =  ~P V
)
32adantr 481 . . . 4  |-  ( ( v  =  V  /\  e  =  E )  ->  ~P v  =  ~P V )
43rabeqdv 3194 . . 3  |-  ( ( v  =  V  /\  e  =  E )  ->  { x  e.  ~P v  |  ( # `  x
)  =  2 }  =  { x  e. 
~P V  |  (
# `  x )  =  2 } )
51, 4sseq12d 3634 . 2  |-  ( ( v  =  V  /\  e  =  E )  ->  ( e  C_  { x  e.  ~P v  |  (
# `  x )  =  2 }  <->  E  C_  { x  e.  ~P V  |  (
# `  x )  =  2 } ) )
6 ausgr.1 . 2  |-  G  =  { <. v ,  e
>.  |  e  C_  { x  e.  ~P v  |  ( # `  x
)  =  2 } }
75, 6brabga 4989 1  |-  ( ( V  e.  W  /\  E  e.  X )  ->  ( V G E  <-> 
E  C_  { x  e.  ~P V  |  (
# `  x )  =  2 } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653   {copab 4712   ` cfv 5888   2c2 11070   #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713
This theorem is referenced by:  ausgrusgrb  26060  usgrausgri  26061  ausgrumgri  26062  ausgrusgri  26063
  Copyright terms: Public domain W3C validator