MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscyg2 Structured version   Visualization version   Unicode version

Theorem iscyg2 18284
Description: A cyclic group is a group which contains a generator. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
iscyg.1  |-  B  =  ( Base `  G
)
iscyg.2  |-  .x.  =  (.g
`  G )
iscyg3.e  |-  E  =  { x  e.  B  |  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B }
Assertion
Ref Expression
iscyg2  |-  ( G  e. CycGrp 
<->  ( G  e.  Grp  /\  E  =/=  (/) ) )
Distinct variable groups:    x, n, B    n, G, x    .x. , n, x
Allowed substitution hints:    E( x, n)

Proof of Theorem iscyg2
StepHypRef Expression
1 iscyg.1 . . 3  |-  B  =  ( Base `  G
)
2 iscyg.2 . . 3  |-  .x.  =  (.g
`  G )
31, 2iscyg 18281 . 2  |-  ( G  e. CycGrp 
<->  ( G  e.  Grp  /\ 
E. x  e.  B  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B ) )
4 iscyg3.e . . . . 5  |-  E  =  { x  e.  B  |  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B }
54neeq1i 2858 . . . 4  |-  ( E  =/=  (/)  <->  { x  e.  B  |  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B }  =/=  (/) )
6 rabn0 3958 . . . 4  |-  ( { x  e.  B  |  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B }  =/=  (/)  <->  E. x  e.  B  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B )
75, 6bitri 264 . . 3  |-  ( E  =/=  (/)  <->  E. x  e.  B  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B )
87anbi2i 730 . 2  |-  ( ( G  e.  Grp  /\  E  =/=  (/) )  <->  ( G  e.  Grp  /\  E. x  e.  B  ran  ( n  e.  ZZ  |->  ( n 
.x.  x ) )  =  B ) )
93, 8bitr4i 267 1  |-  ( G  e. CycGrp 
<->  ( G  e.  Grp  /\  E  =/=  (/) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   {crab 2916   (/)c0 3915    |-> cmpt 4729   ran crn 5115   ` cfv 5888  (class class class)co 6650   ZZcz 11377   Basecbs 15857   Grpcgrp 17422  .gcmg 17540  CycGrpccyg 18279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-cnv 5122  df-dm 5124  df-rn 5125  df-iota 5851  df-fv 5896  df-ov 6653  df-cyg 18280
This theorem is referenced by:  iscygd  18289  iscygodd  18290  cyggex2  18298  cyggexb  18300  cygzn  19919
  Copyright terms: Public domain W3C validator