| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isdlat | Structured version Visualization version Unicode version | ||
| Description: Property of being a distributive lattice. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| Ref | Expression |
|---|---|
| isdlat.b |
|
| isdlat.j |
|
| isdlat.m |
|
| Ref | Expression |
|---|---|
| isdlat |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6191 |
. . . . 5
| |
| 2 | isdlat.b |
. . . . 5
| |
| 3 | 1, 2 | syl6eqr 2674 |
. . . 4
|
| 4 | fveq2 6191 |
. . . . . 6
| |
| 5 | isdlat.j |
. . . . . 6
| |
| 6 | 4, 5 | syl6eqr 2674 |
. . . . 5
|
| 7 | fveq2 6191 |
. . . . . . 7
| |
| 8 | isdlat.m |
. . . . . . 7
| |
| 9 | 7, 8 | syl6eqr 2674 |
. . . . . 6
|
| 10 | 9 | sbceq1d 3440 |
. . . . 5
|
| 11 | 6, 10 | sbceqbid 3442 |
. . . 4
|
| 12 | 3, 11 | sbceqbid 3442 |
. . 3
|
| 13 | fvex 6201 |
. . . . 5
| |
| 14 | 2, 13 | eqeltri 2697 |
. . . 4
|
| 15 | fvex 6201 |
. . . . 5
| |
| 16 | 5, 15 | eqeltri 2697 |
. . . 4
|
| 17 | fvex 6201 |
. . . . 5
| |
| 18 | 8, 17 | eqeltri 2697 |
. . . 4
|
| 19 | raleq 3138 |
. . . . . . . 8
| |
| 20 | 19 | raleqbi1dv 3146 |
. . . . . . 7
|
| 21 | 20 | raleqbi1dv 3146 |
. . . . . 6
|
| 22 | simpr 477 |
. . . . . . . . . 10
| |
| 23 | eqidd 2623 |
. . . . . . . . . 10
| |
| 24 | simpl 473 |
. . . . . . . . . . 11
| |
| 25 | 24 | oveqd 6667 |
. . . . . . . . . 10
|
| 26 | 22, 23, 25 | oveq123d 6671 |
. . . . . . . . 9
|
| 27 | 22 | oveqd 6667 |
. . . . . . . . . 10
|
| 28 | 22 | oveqd 6667 |
. . . . . . . . . 10
|
| 29 | 24, 27, 28 | oveq123d 6671 |
. . . . . . . . 9
|
| 30 | 26, 29 | eqeq12d 2637 |
. . . . . . . 8
|
| 31 | 30 | ralbidv 2986 |
. . . . . . 7
|
| 32 | 31 | 2ralbidv 2989 |
. . . . . 6
|
| 33 | 21, 32 | sylan9bb 736 |
. . . . 5
|
| 34 | 33 | 3impb 1260 |
. . . 4
|
| 35 | 14, 16, 18, 34 | sbc3ie 3507 |
. . 3
|
| 36 | 12, 35 | syl6bb 276 |
. 2
|
| 37 | df-dlat 17192 |
. 2
| |
| 38 | 36, 37 | elrab2 3366 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-dlat 17192 |
| This theorem is referenced by: dlatmjdi 17194 dlatl 17195 odudlatb 17196 |
| Copyright terms: Public domain | W3C validator |