MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dlatmjdi Structured version   Visualization version   Unicode version

Theorem dlatmjdi 17194
Description: In a distributive lattice, meets distribute over joins. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypotheses
Ref Expression
isdlat.b  |-  B  =  ( Base `  K
)
isdlat.j  |-  .\/  =  ( join `  K )
isdlat.m  |-  ./\  =  ( meet `  K )
Assertion
Ref Expression
dlatmjdi  |-  ( ( K  e. DLat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  ./\  ( Y  .\/  Z
) )  =  ( ( X  ./\  Y
)  .\/  ( X  ./\ 
Z ) ) )

Proof of Theorem dlatmjdi
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isdlat.b . . . 4  |-  B  =  ( Base `  K
)
2 isdlat.j . . . 4  |-  .\/  =  ( join `  K )
3 isdlat.m . . . 4  |-  ./\  =  ( meet `  K )
41, 2, 3isdlat 17193 . . 3  |-  ( K  e. DLat 
<->  ( K  e.  Lat  /\ 
A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  ./\  ( y 
.\/  z ) )  =  ( ( x 
./\  y )  .\/  ( x  ./\  z ) ) ) )
54simprbi 480 . 2  |-  ( K  e. DLat  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  ./\  ( y 
.\/  z ) )  =  ( ( x 
./\  y )  .\/  ( x  ./\  z ) ) )
6 oveq1 6657 . . . 4  |-  ( x  =  X  ->  (
x  ./\  ( y  .\/  z ) )  =  ( X  ./\  (
y  .\/  z )
) )
7 oveq1 6657 . . . . 5  |-  ( x  =  X  ->  (
x  ./\  y )  =  ( X  ./\  y ) )
8 oveq1 6657 . . . . 5  |-  ( x  =  X  ->  (
x  ./\  z )  =  ( X  ./\  z ) )
97, 8oveq12d 6668 . . . 4  |-  ( x  =  X  ->  (
( x  ./\  y
)  .\/  ( x  ./\  z ) )  =  ( ( X  ./\  y )  .\/  ( X  ./\  z ) ) )
106, 9eqeq12d 2637 . . 3  |-  ( x  =  X  ->  (
( x  ./\  (
y  .\/  z )
)  =  ( ( x  ./\  y )  .\/  ( x  ./\  z
) )  <->  ( X  ./\  ( y  .\/  z
) )  =  ( ( X  ./\  y
)  .\/  ( X  ./\  z ) ) ) )
11 oveq1 6657 . . . . 5  |-  ( y  =  Y  ->  (
y  .\/  z )  =  ( Y  .\/  z ) )
1211oveq2d 6666 . . . 4  |-  ( y  =  Y  ->  ( X  ./\  ( y  .\/  z ) )  =  ( X  ./\  ( Y  .\/  z ) ) )
13 oveq2 6658 . . . . 5  |-  ( y  =  Y  ->  ( X  ./\  y )  =  ( X  ./\  Y
) )
1413oveq1d 6665 . . . 4  |-  ( y  =  Y  ->  (
( X  ./\  y
)  .\/  ( X  ./\  z ) )  =  ( ( X  ./\  Y )  .\/  ( X 
./\  z ) ) )
1512, 14eqeq12d 2637 . . 3  |-  ( y  =  Y  ->  (
( X  ./\  (
y  .\/  z )
)  =  ( ( X  ./\  y )  .\/  ( X  ./\  z
) )  <->  ( X  ./\  ( Y  .\/  z
) )  =  ( ( X  ./\  Y
)  .\/  ( X  ./\  z ) ) ) )
16 oveq2 6658 . . . . 5  |-  ( z  =  Z  ->  ( Y  .\/  z )  =  ( Y  .\/  Z
) )
1716oveq2d 6666 . . . 4  |-  ( z  =  Z  ->  ( X  ./\  ( Y  .\/  z ) )  =  ( X  ./\  ( Y  .\/  Z ) ) )
18 oveq2 6658 . . . . 5  |-  ( z  =  Z  ->  ( X  ./\  z )  =  ( X  ./\  Z
) )
1918oveq2d 6666 . . . 4  |-  ( z  =  Z  ->  (
( X  ./\  Y
)  .\/  ( X  ./\  z ) )  =  ( ( X  ./\  Y )  .\/  ( X 
./\  Z ) ) )
2017, 19eqeq12d 2637 . . 3  |-  ( z  =  Z  ->  (
( X  ./\  ( Y  .\/  z ) )  =  ( ( X 
./\  Y )  .\/  ( X  ./\  z ) )  <->  ( X  ./\  ( Y  .\/  Z ) )  =  ( ( X  ./\  Y )  .\/  ( X  ./\  Z
) ) ) )
2110, 15, 20rspc3v 3325 . 2  |-  ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  ->  ( A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  ./\  ( y  .\/  z
) )  =  ( ( x  ./\  y
)  .\/  ( x  ./\  z ) )  -> 
( X  ./\  ( Y  .\/  Z ) )  =  ( ( X 
./\  Y )  .\/  ( X  ./\  Z ) ) ) )
225, 21mpan9 486 1  |-  ( ( K  e. DLat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  ./\  ( Y  .\/  Z
) )  =  ( ( X  ./\  Y
)  .\/  ( X  ./\ 
Z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   ` cfv 5888  (class class class)co 6650   Basecbs 15857   joincjn 16944   meetcmee 16945   Latclat 17045  DLatcdlat 17191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-dlat 17192
This theorem is referenced by:  dlatjmdi  17197
  Copyright terms: Public domain W3C validator