| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfildlem | Structured version Visualization version Unicode version | ||
| Description: Lemma for isfild 21662. (Contributed by Mario Carneiro, 1-Dec-2013.) |
| Ref | Expression |
|---|---|
| isfild.1 |
|
| isfild.2 |
|
| Ref | Expression |
|---|---|
| isfildlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3212 |
. . 3
| |
| 2 | 1 | a1i 11 |
. 2
|
| 3 | isfild.2 |
. . . 4
| |
| 4 | ssexg 4804 |
. . . . 5
| |
| 5 | 4 | expcom 451 |
. . . 4
|
| 6 | 3, 5 | syl 17 |
. . 3
|
| 7 | 6 | adantrd 484 |
. 2
|
| 8 | eleq1 2689 |
. . . . . 6
| |
| 9 | sseq1 3626 |
. . . . . . 7
| |
| 10 | dfsbcq 3437 |
. . . . . . 7
| |
| 11 | 9, 10 | anbi12d 747 |
. . . . . 6
|
| 12 | 8, 11 | bibi12d 335 |
. . . . 5
|
| 13 | 12 | imbi2d 330 |
. . . 4
|
| 14 | nfv 1843 |
. . . . . 6
| |
| 15 | nfv 1843 |
. . . . . . 7
| |
| 16 | nfv 1843 |
. . . . . . . 8
| |
| 17 | nfsbc1v 3455 |
. . . . . . . 8
| |
| 18 | 16, 17 | nfan 1828 |
. . . . . . 7
|
| 19 | 15, 18 | nfbi 1833 |
. . . . . 6
|
| 20 | 14, 19 | nfim 1825 |
. . . . 5
|
| 21 | eleq1 2689 |
. . . . . . 7
| |
| 22 | sseq1 3626 |
. . . . . . . 8
| |
| 23 | sbceq1a 3446 |
. . . . . . . 8
| |
| 24 | 22, 23 | anbi12d 747 |
. . . . . . 7
|
| 25 | 21, 24 | bibi12d 335 |
. . . . . 6
|
| 26 | 25 | imbi2d 330 |
. . . . 5
|
| 27 | isfild.1 |
. . . . 5
| |
| 28 | 20, 26, 27 | chvar 2262 |
. . . 4
|
| 29 | 13, 28 | vtoclg 3266 |
. . 3
|
| 30 | 29 | com12 32 |
. 2
|
| 31 | 2, 7, 30 | pm5.21ndd 369 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-sbc 3436 df-in 3581 df-ss 3588 |
| This theorem is referenced by: isfild 21662 |
| Copyright terms: Public domain | W3C validator |