HomeHome Metamath Proof Explorer
Theorem List (p. 217 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 21601-21700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremindishmph 21601 Equinumerous sets equipped with their indiscrete topologies are homeomorphic (which means in that particular case that a segment is homeomorphic to a circle contrary to what Wikipedia claims). (Contributed by FL, 17-Aug-2008.) (Proof shortened by Mario Carneiro, 10-Sep-2015.)
 |-  ( A  ~~  B  ->  { (/) ,  A }  ~=  { (/) ,  B }
 )
 
Theoremhmphen2 21602 Homeomorphisms preserve the cardinality of the underlying sets. (Contributed by FL, 17-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.)
 |-  X  =  U. J   &    |-  Y  =  U. K   =>    |-  ( J  ~=  K  ->  X  ~~  Y )
 
Theoremcmphaushmeo 21603 A continuous bijection from a compact space to a Hausdorff space is a homeomorphism. (Contributed by Mario Carneiro, 17-Feb-2015.)
 |-  X  =  U. J   &    |-  Y  =  U. K   =>    |-  ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K ) )  ->  ( F  e.  ( J Homeo K )  <->  F : X -1-1-onto-> Y ) )
 
Theoremordthmeolem 21604 Lemma for ordthmeo 21605. (Contributed by Mario Carneiro, 9-Sep-2015.)
 |-  X  =  dom  R   &    |-  Y  =  dom  S   =>    |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  F  e.  ( (ordTop `  R )  Cn  (ordTop `  S )
 ) )
 
Theoremordthmeo 21605 An order isomorphism is a homeomorphism on the respective order topologies. (Contributed by Mario Carneiro, 9-Sep-2015.)
 |-  X  =  dom  R   &    |-  Y  =  dom  S   =>    |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  F  e.  ( (ordTop `  R ) Homeo (ordTop `  S )
 ) )
 
Theoremtxhmeo 21606* Lift a pair of homeomorphisms on the factors to a homeomorphism of product topologies. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |-  X  =  U. J   &    |-  Y  =  U. K   &    |-  ( ph  ->  F  e.  ( J Homeo L ) )   &    |-  ( ph  ->  G  e.  ( K Homeo M ) )   =>    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  <. ( F `
  x ) ,  ( G `  y
 ) >. )  e.  (
 ( J  tX  K ) Homeo ( L  tX  M ) ) )
 
Theoremtxswaphmeolem 21607* Show inverse for the "swap components" operation on a Cartesian product. (Contributed by Mario Carneiro, 21-Mar-2015.)
 |-  ( ( y  e.  Y ,  x  e.  X  |->  <. x ,  y >. )  o.  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. ) )  =  (  _I  |`  ( X  X.  Y ) )
 
Theoremtxswaphmeo 21608* There is a homeomorphism from  X  X.  Y to  Y  X.  X. (Contributed by Mario Carneiro, 21-Mar-2015.)
 |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  ->  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. )  e.  ( ( J  tX  K ) Homeo ( K  tX  J ) ) )
 
Theorempt1hmeo 21609* The canonical homeomorphism from a topological product on a singleton to the topology of the factor. (Contributed by Mario Carneiro, 3-Feb-2015.) (Proof shortened by AV, 18-Apr-2021.)
 |-  K  =  ( Xt_ ` 
 { <. A ,  J >. } )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  J  e.  (TopOn `  X ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  {
 <. A ,  x >. } )  e.  ( J
 Homeo K ) )
 
Theoremptuncnv 21610* Exhibit the converse function of the map  G which joins two product topologies on disjoint index sets. (Contributed by Mario Carneiro, 8-Feb-2015.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
 |-  X  =  U. K   &    |-  Y  =  U. L   &    |-  J  =  (
 Xt_ `  F )   &    |-  K  =  ( Xt_ `  ( F  |`  A ) )   &    |-  L  =  ( Xt_ `  ( F  |`  B ) )   &    |-  G  =  ( x  e.  X ,  y  e.  Y  |->  ( x  u.  y ) )   &    |-  ( ph  ->  C  e.  V )   &    |-  ( ph  ->  F : C --> Top )   &    |-  ( ph  ->  C  =  ( A  u.  B ) )   &    |-  ( ph  ->  ( A  i^i  B )  =  (/) )   =>    |-  ( ph  ->  `' G  =  ( z  e.  U. J  |->  <. ( z  |`  A ) ,  (
 z  |`  B ) >. ) )
 
Theoremptunhmeo 21611* Define a homeomorphism from a binary product of indexed product topologies to an indexed product topology on the union of the index sets. This is the topological analogue of  ( A ^ B )  x.  ( A ^ C )  =  A ^ ( B  +  C ). (Contributed by Mario Carneiro, 8-Feb-2015.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
 |-  X  =  U. K   &    |-  Y  =  U. L   &    |-  J  =  (
 Xt_ `  F )   &    |-  K  =  ( Xt_ `  ( F  |`  A ) )   &    |-  L  =  ( Xt_ `  ( F  |`  B ) )   &    |-  G  =  ( x  e.  X ,  y  e.  Y  |->  ( x  u.  y ) )   &    |-  ( ph  ->  C  e.  V )   &    |-  ( ph  ->  F : C --> Top )   &    |-  ( ph  ->  C  =  ( A  u.  B ) )   &    |-  ( ph  ->  ( A  i^i  B )  =  (/) )   =>    |-  ( ph  ->  G  e.  ( ( K  tX  L ) Homeo J ) )
 
Theoremxpstopnlem1 21612* The function  F used in xpsval 16232 is a homeomorphism from the binary product topology to the indexed product topology. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |-  F  =  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } )
 )   &    |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   =>    |-  ( ph  ->  F  e.  ( ( J  tX  K ) Homeo ( Xt_ `  `' ( { J }  +c  { K } )
 ) ) )
 
Theoremxpstps 21613 A binary product of topologies is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015.)
 |-  T  =  ( R  X.s  S )   =>    |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  T  e.  TopSp )
 
Theoremxpstopnlem2 21614* Lemma for xpstopn 21615. (Contributed by Mario Carneiro, 27-Aug-2015.)
 |-  T  =  ( R  X.s  S )   &    |-  J  =  (
 TopOpen `  R )   &    |-  K  =  ( TopOpen `  S )   &    |-  O  =  ( TopOpen `  T )   &    |-  X  =  ( Base `  R )   &    |-  Y  =  ( Base `  S )   &    |-  F  =  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } )
 )   =>    |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  O  =  ( J  tX  K ) )
 
Theoremxpstopn 21615 The topology on a binary product of topological spaces, as we have defined it (transferring the indexed product topology on functions on  { (/) ,  1o } to  ( X  X.  Y
) by the canonical bijection), coincides with the usual topological product (generated by a base of rectangles). (Contributed by Mario Carneiro, 27-Aug-2015.)
 |-  T  =  ( R  X.s  S )   &    |-  J  =  (
 TopOpen `  R )   &    |-  K  =  ( TopOpen `  S )   &    |-  O  =  ( TopOpen `  T )   =>    |-  (
 ( R  e.  TopSp  /\  S  e.  TopSp )  ->  O  =  ( J  tX  K ) )
 
Theoremptcmpfi 21616 A topological product of finitely many compact spaces is compact. This weak version of Tychonoff's theorem does not require the axiom of choice. (Contributed by Mario Carneiro, 8-Feb-2015.)
 |-  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  F )  e.  Comp )
 
Theoremxkocnv 21617* The inverse of the "currying" function  F is the uncurrying function. (Contributed by Mario Carneiro, 13-Apr-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   &    |-  F  =  ( f  e.  ( ( J 
 tX  K )  Cn  L )  |->  ( x  e.  X  |->  ( y  e.  Y  |->  ( x f y ) ) ) )   &    |-  ( ph  ->  J  e. 𝑛Locally 
 Comp )   &    |-  ( ph  ->  K  e. 𝑛Locally 
 Comp )   &    |-  ( ph  ->  L  e.  Top )   =>    |-  ( ph  ->  `' F  =  ( g  e.  ( J  Cn  ( L  ^ko  K ) )  |->  ( x  e.  X ,  y  e.  Y  |->  ( ( g `  x ) `
  y ) ) ) )
 
Theoremxkohmeo 21618* The Exponential Law for topological spaces. The "currying" function  F is a homeomorphism on function spaces when  J and  K are exponentiable spaces (by xkococn 21463, it is sufficient to assume that  J ,  K are locally compact to ensure exponentiability). (Contributed by Mario Carneiro, 13-Apr-2015.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   &    |-  F  =  ( f  e.  ( ( J 
 tX  K )  Cn  L )  |->  ( x  e.  X  |->  ( y  e.  Y  |->  ( x f y ) ) ) )   &    |-  ( ph  ->  J  e. 𝑛Locally 
 Comp )   &    |-  ( ph  ->  K  e. 𝑛Locally 
 Comp )   &    |-  ( ph  ->  L  e.  Top )   =>    |-  ( ph  ->  F  e.  ( ( L 
 ^ko  ( J  tX  K )
 ) Homeo ( ( L 
 ^ko  K )  ^ko  J ) ) )
 
Theoremqtopf1 21619 If a quotient map is injective, then it is a homeomorphism. (Contributed by Mario Carneiro, 25-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  F : X -1-1-> Y )   =>    |-  ( ph  ->  F  e.  ( J Homeo ( J qTop 
 F ) ) )
 
Theoremqtophmeo 21620* If two functions on a base topology 
J make the same identifications in order to create quotient spaces  J qTop  F and  J qTop  G, then not only are  J qTop  F and  J qTop  G homeomorphic, but there is a unique homeomorphism that makes the diagram commute. (Contributed by Mario Carneiro, 24-Mar-2015.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  F : X -onto-> Y )   &    |-  ( ph  ->  G : X -onto-> Y )   &    |-  ( ( ph  /\  ( x  e.  X  /\  y  e.  X )
 )  ->  ( ( F `  x )  =  ( F `  y
 ) 
 <->  ( G `  x )  =  ( G `  y ) ) )   =>    |-  ( ph  ->  E! f  e.  ( ( J qTop  F ) Homeo ( J qTop  G ) ) G  =  ( f  o.  F ) )
 
Theoremt0kq 21621* A topological space is T0 iff the quotient map is a homeomorphism onto the space's Kolmogorov quotient. (Contributed by Mario Carneiro, 25-Aug-2015.)
 |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )   =>    |-  ( J  e.  (TopOn `  X )  ->  ( J  e.  Kol2  <->  F  e.  ( J Homeo (KQ `  J ) ) ) )
 
Theoremkqhmph 21622 A topological space is T0 iff it is homeomorphic to its Kolmogorov quotient. (Contributed by Mario Carneiro, 25-Aug-2015.)
 |-  ( J  e.  Kol2  <->  J  ~=  (KQ `  J )
 )
 
Theoremist1-5lem 21623 Lemma for ist1-5 21625 and similar theorems. If  A is a topological property which implies T0, such as T1 or T2, the property can be "decomposed" into T0 and a non-T0 version of property  A (which is defined as stating that the Kolmogorov quotient of the space has property  A). For example, if  A is T1, then the theorem states that a space is T1 iff it is T0 and its Kolmogorov quotient is T1 (we call this property R0). (Contributed by Mario Carneiro, 25-Aug-2015.)
 |-  ( J  e.  A  ->  J  e.  Kol2 )   &    |-  ( J  ~=  (KQ `  J )  ->  ( J  e.  A  ->  (KQ `  J )  e.  A )
 )   &    |-  ( (KQ `  J )  ~=  J  ->  (
 (KQ `  J )  e.  A  ->  J  e.  A ) )   =>    |-  ( J  e.  A 
 <->  ( J  e.  Kol2  /\  (KQ `  J )  e.  A ) )
 
Theoremt1r0 21624 A T1 space is R0. That is, the Kolmogorov quotient of a T1 space is also T1 (because they are homeomorphic). (Contributed by Mario Carneiro, 25-Aug-2015.)
 |-  ( J  e.  Fre  ->  (KQ `  J )  e. 
 Fre )
 
Theoremist1-5 21625 A topological space is T1 iff it is both T0 and R0. (Contributed by Mario Carneiro, 25-Aug-2015.)
 |-  ( J  e.  Fre  <->  ( J  e.  Kol2  /\  (KQ `  J )  e.  Fre ) )
 
Theoremishaus3 21626 A topological space is Hausdorff iff it is both T0 and R1 (where R1 means that any two topologically distinct points are separated by neighborhoods). (Contributed by Mario Carneiro, 25-Aug-2015.)
 |-  ( J  e.  Haus  <->  ( J  e.  Kol2  /\  (KQ `  J )  e.  Haus ) )
 
Theoremnrmreg 21627 A normal T1 space is regular Hausdorff. In other words, a T4 space is T3 . One can get away with slightly weaker assumptions; see nrmr0reg 21552. (Contributed by Mario Carneiro, 25-Aug-2015.)
 |-  ( ( J  e.  Nrm  /\  J  e.  Fre )  ->  J  e.  Reg )
 
Theoremreghaus 21628 A regular T0 space is Hausdorff. In other words, a T3 space is T2 . A regular Hausdorff or T0 space is also known as a T3 space. (Contributed by Mario Carneiro, 24-Aug-2015.)
 |-  ( J  e.  Reg  ->  ( J  e.  Haus  <->  J  e.  Kol2 )
 )
 
Theoremnrmhaus 21629 A T1 normal space is Hausdorff. A Hausdorff or T1 normal space is also known as a T4 space. (Contributed by Mario Carneiro, 24-Aug-2015.)
 |-  ( J  e.  Nrm  ->  ( J  e.  Haus  <->  J  e.  Fre ) )
 
12.2  Filters and filter bases
 
12.2.1  Filter bases
 
Theoremelmptrab 21630* Membership in a one-parameter class of sets. (Contributed by Stefan O'Rear, 28-Jul-2015.)
 |-  F  =  ( x  e.  D  |->  { y  e.  B  |  ph } )   &    |-  (
 ( x  =  X  /\  y  =  Y )  ->  ( ph  <->  ps ) )   &    |-  ( x  =  X  ->  B  =  C )   &    |-  ( x  e.  D  ->  B  e.  V )   =>    |-  ( Y  e.  ( F `  X )  <-> 
 ( X  e.  D  /\  Y  e.  C  /\  ps ) )
 
Theoremelmptrab2OLD 21631* Obsolete version of elmptrab2 21632 as of 26-Mar-2021. (Contributed by Stefan O'Rear, 28-Jul-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  F  =  ( x  e.  _V  |->  { y  e.  B  |  ph } )   &    |-  (
 ( x  =  X  /\  y  =  Y )  ->  ( ph  <->  ps ) )   &    |-  ( x  =  X  ->  B  =  C )   &    |-  B  e.  V   &    |-  ( Y  e.  C  ->  X  e.  W )   =>    |-  ( Y  e.  ( F `  X )  <->  ( Y  e.  C  /\  ps ) )
 
Theoremelmptrab2 21632* Membership in a one-parameter class of sets, indexed by arbitrary base sets. (Contributed by Stefan O'Rear, 28-Jul-2015.) (Revised by AV, 26-Mar-2021.)
 |-  F  =  ( x  e.  _V  |->  { y  e.  B  |  ph } )   &    |-  (
 ( x  =  X  /\  y  =  Y )  ->  ( ph  <->  ps ) )   &    |-  ( x  =  X  ->  B  =  C )   &    |-  B  e.  _V   &    |-  ( Y  e.  C  ->  X  e.  W )   =>    |-  ( Y  e.  ( F `  X )  <->  ( Y  e.  C  /\  ps ) )
 
Theoremisfbas 21633* The predicate " F is a filter base." Note that some authors require filter bases to be closed under pairwise intersections, but that is not necessary under our definition. One advantage of this definition is that tails in a directed set form a filter base under our meaning. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Mario Carneiro, 28-Jul-2015.)
 |-  ( B  e.  A  ->  ( F  e.  ( fBas `  B )  <->  ( F  C_  ~P B  /\  ( F  =/=  (/)  /\  (/)  e/  F  /\  A. x  e.  F  A. y  e.  F  ( F  i^i  ~P ( x  i^i  y ) )  =/=  (/) ) ) ) )
 
Theoremfbasne0 21634 There are no empty filter bases. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Mario Carneiro, 28-Jul-2015.)
 |-  ( F  e.  ( fBas `  B )  ->  F  =/=  (/) )
 
Theorem0nelfb 21635 No filter base contains the empty set. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Mario Carneiro, 28-Jul-2015.)
 |-  ( F  e.  ( fBas `  B )  ->  -.  (/)  e.  F )
 
Theoremfbsspw 21636 A filter base on a set is a subset of the power set. (Contributed by Stefan O'Rear, 28-Jul-2015.)
 |-  ( F  e.  ( fBas `  B )  ->  F  C_  ~P B )
 
Theoremfbelss 21637 An element of the filter base is a subset of the base set. (Contributed by Stefan O'Rear, 28-Jul-2015.)
 |-  ( ( F  e.  ( fBas `  B )  /\  X  e.  F ) 
 ->  X  C_  B )
 
Theoremfbdmn0 21638 The domain of a filter base is nonempty. (Contributed by Mario Carneiro, 28-Nov-2013.) (Revised by Stefan O'Rear, 28-Jul-2015.)
 |-  ( F  e.  ( fBas `  B )  ->  B  =/=  (/) )
 
Theoremisfbas2 21639* The predicate " F is a filter base." (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 28-Jul-2015.)
 |-  ( B  e.  A  ->  ( F  e.  ( fBas `  B )  <->  ( F  C_  ~P B  /\  ( F  =/=  (/)  /\  (/)  e/  F  /\  A. x  e.  F  A. y  e.  F  E. z  e.  F  z  C_  ( x  i^i  y
 ) ) ) ) )
 
Theoremfbasssin 21640* A filter base contains subsets of its pairwise intersections. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Jeff Hankins, 1-Dec-2010.)
 |-  ( ( F  e.  ( fBas `  X )  /\  A  e.  F  /\  B  e.  F )  ->  E. x  e.  F  x  C_  ( A  i^i  B ) )
 
Theoremfbssfi 21641* A filter base contains subsets of its finite intersections. (Contributed by Mario Carneiro, 26-Nov-2013.) (Revised by Stefan O'Rear, 28-Jul-2015.)
 |-  ( ( F  e.  ( fBas `  X )  /\  A  e.  ( fi
 `  F ) ) 
 ->  E. x  e.  F  x  C_  A )
 
Theoremfbssint 21642* A filter base contains subsets of its finite intersections. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 28-Jul-2015.)
 |-  ( ( F  e.  ( fBas `  B )  /\  A  C_  F  /\  A  e.  Fin )  ->  E. x  e.  F  x  C_  |^| A )
 
Theoremfbncp 21643 A filter base does not contain complements of its elements. (Contributed by Mario Carneiro, 26-Nov-2013.) (Revised by Stefan O'Rear, 28-Jul-2015.)
 |-  ( ( F  e.  ( fBas `  X )  /\  A  e.  F ) 
 ->  -.  ( B  \  A )  e.  F )
 
Theoremfbun 21644* A necessary and sufficient condition for the union of two filter bases to also be a filter base. (Contributed by Mario Carneiro, 28-Nov-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
 |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X ) )  ->  ( ( F  u.  G )  e.  ( fBas `  X )  <->  A. x  e.  F  A. y  e.  G  E. z  e.  ( F  u.  G ) z  C_  ( x  i^i  y ) ) )
 
Theoremfbfinnfr 21645 No filter base containing a finite element is free. (Contributed by Jeff Hankins, 5-Dec-2009.) (Revised by Stefan O'Rear, 28-Jul-2015.)
 |-  ( ( F  e.  ( fBas `  B )  /\  S  e.  F  /\  S  e.  Fin )  ->  |^| F  =/=  (/) )
 
Theoremopnfbas 21646* The collection of open supersets of a nonempty set in a topology is a neighborhoods of the set, one of the motivations for the filter concept. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Aug-2015.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  { x  e.  J  |  S  C_  x }  e.  ( fBas `  X ) )
 
Theoremtrfbas2 21647 Conditions for the trace of a filter base  F to be a filter base. (Contributed by Mario Carneiro, 13-Oct-2015.)
 |-  ( ( F  e.  ( fBas `  Y )  /\  A  C_  Y )  ->  ( ( Ft  A )  e.  ( fBas `  A ) 
 <->  -.  (/)  e.  ( Ft  A ) ) )
 
Theoremtrfbas 21648* Conditions for the trace of a filter base  F to be a filter base. (Contributed by Mario Carneiro, 13-Oct-2015.)
 |-  ( ( F  e.  ( fBas `  Y )  /\  A  C_  Y )  ->  ( ( Ft  A )  e.  ( fBas `  A ) 
 <-> 
 A. v  e.  F  ( v  i^i  A )  =/=  (/) ) )
 
12.2.2  Filters
 
Syntaxcfil 21649 Extend class notation with the set of filters on a set.
 class  Fil
 
Definitiondf-fil 21650* The set of filters on a set. Definition 1 (axioms FI, FIIa, FIIb, FIII) of [BourbakiTop1] p. I.36. Filters are used to define the concept of limit in the general case. They are a generalization of the idea of neighborhoods. Suppose you are in  RR. With neighborhoods you can express the idea of a variable that tends to a specific number but you can't express the idea of a variable that tends to infinity. Filters relax the "axioms" of neighborhoods and then succeed in expressing the idea of something that tends to infinity. Filters were invented by Cartan in 1937 and made famous by Bourbaki in his treatise. A notion similar to the notion of filter is the concept of net invented by Moore and Smith in 1922. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.)
 |- 
 Fil  =  ( z  e.  _V  |->  { f  e.  ( fBas `  z )  | 
 A. x  e.  ~P  z ( ( f  i^i  ~P x )  =/=  (/)  ->  x  e.  f ) } )
 
Theoremisfil 21651* The predicate "is a filter." (Contributed by FL, 20-Jul-2007.) (Revised by Mario Carneiro, 28-Jul-2015.)
 |-  ( F  e.  ( Fil `  X )  <->  ( F  e.  ( fBas `  X )  /\  A. x  e.  ~P  X ( ( F  i^i  ~P x )  =/=  (/)  ->  x  e.  F ) ) )
 
Theoremfilfbas 21652 A filter is a filter base. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Jul-2015.)
 |-  ( F  e.  ( Fil `  X )  ->  F  e.  ( fBas `  X ) )
 
Theorem0nelfil 21653 The empty set doesn't belong to a filter. (Contributed by FL, 20-Jul-2007.) (Revised by Mario Carneiro, 28-Jul-2015.)
 |-  ( F  e.  ( Fil `  X )  ->  -.  (/)  e.  F )
 
Theoremfileln0 21654 An element of a filter is nonempty. (Contributed by FL, 24-May-2011.) (Revised by Mario Carneiro, 28-Jul-2015.)
 |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F ) 
 ->  A  =/=  (/) )
 
Theoremfilsspw 21655 A filter is a subset of the power set of the base set. (Contributed by Stefan O'Rear, 28-Jul-2015.)
 |-  ( F  e.  ( Fil `  X )  ->  F  C_  ~P X )
 
Theoremfilelss 21656 An element of a filter is a subset of the base set. (Contributed by Stefan O'Rear, 28-Jul-2015.)
 |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F ) 
 ->  A  C_  X )
 
Theoremfilss 21657 A filter is closed under taking supersets. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.)
 |-  ( ( F  e.  ( Fil `  X )  /\  ( A  e.  F  /\  B  C_  X  /\  A  C_  B ) ) 
 ->  B  e.  F )
 
Theoremfilin 21658 A filter is closed under taking intersections. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.)
 |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F  /\  B  e.  F )  ->  ( A  i^i  B )  e.  F )
 
Theoremfiltop 21659 The underlying set belongs to the filter. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.)
 |-  ( F  e.  ( Fil `  X )  ->  X  e.  F )
 
Theoremisfil2 21660* Derive the standard axioms of a filter. (Contributed by Mario Carneiro, 27-Nov-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
 |-  ( F  e.  ( Fil `  X )  <->  ( ( F 
 C_  ~P X  /\  -.  (/) 
 e.  F  /\  X  e.  F )  /\  A. x  e.  ~P  X ( E. y  e.  F  y  C_  x  ->  x  e.  F )  /\  A. x  e.  F  A. y  e.  F  ( x  i^i  y )  e.  F ) )
 
Theoremisfildlem 21661* Lemma for isfild 21662. (Contributed by Mario Carneiro, 1-Dec-2013.)
 |-  ( ph  ->  ( x  e.  F  <->  ( x  C_  A  /\  ps ) ) )   &    |-  ( ph  ->  A  e.  _V )   =>    |-  ( ph  ->  ( B  e.  F  <->  ( B  C_  A  /\  [. B  /  x ].
 ps ) ) )
 
Theoremisfild 21662* Sufficient condition for a set of the form  { x  e.  ~P A  |  ph } to be a filter. (Contributed by Mario Carneiro, 1-Dec-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
 |-  ( ph  ->  ( x  e.  F  <->  ( x  C_  A  /\  ps ) ) )   &    |-  ( ph  ->  A  e.  _V )   &    |-  ( ph  ->  [. A  /  x ].
 ps )   &    |-  ( ph  ->  -.  [. (/)  /  x ]. ps )   &    |-  ( ( ph  /\  y  C_  A  /\  z  C_  y )  ->  ( [. z  /  x ].
 ps  ->  [. y  /  x ].
 ps ) )   &    |-  (
 ( ph  /\  y  C_  A  /\  z  C_  A )  ->  ( ( [. y  /  x ]. ps  /\  [. z  /  x ].
 ps )  ->  [. (
 y  i^i  z )  /  x ]. ps )
 )   =>    |-  ( ph  ->  F  e.  ( Fil `  A ) )
 
Theoremfilfi 21663 A filter is closed under taking intersections. (Contributed by Mario Carneiro, 27-Nov-2013.) (Revised by Stefan O'Rear, 28-Jul-2015.)
 |-  ( F  e.  ( Fil `  X )  ->  ( fi `  F )  =  F )
 
Theoremfilinn0 21664 The intersection of two elements of a filter can't be empty. (Contributed by FL, 16-Sep-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.)
 |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F  /\  B  e.  F )  ->  ( A  i^i  B )  =/=  (/) )
 
Theoremfilintn0 21665 A filter has the finite intersection property. Remark below definition 1 of [BourbakiTop1] p. I.36. (Contributed by FL, 20-Sep-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.)
 |-  ( ( F  e.  ( Fil `  X )  /\  ( A  C_  F  /\  A  =/=  (/)  /\  A  e.  Fin ) )  ->  |^| A  =/=  (/) )
 
Theoremfiln0 21666 The empty set is not a filter. Remark below def. 1 of [BourbakiTop1] p. I.36. (Contributed by FL, 30-Oct-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.)
 |-  ( F  e.  ( Fil `  X )  ->  F  =/=  (/) )
 
Theoreminfil 21667 The intersection of two filters is a filter. Use fiint 8237 to extend this property to the intersection of a finite set of filters. Paragraph 3 of [BourbakiTop1] p. I.36. (Contributed by FL, 17-Sep-2007.) (Revised by Stefan O'Rear, 2-Aug-2015.)
 |-  ( ( F  e.  ( Fil `  X )  /\  G  e.  ( Fil `  X ) )  ->  ( F  i^i  G )  e.  ( Fil `  X ) )
 
Theoremsnfil 21668 A singleton is a filter. Example 1 of [BourbakiTop1] p. I.36. (Contributed by FL, 16-Sep-2007.) (Revised by Stefan O'Rear, 2-Aug-2015.)
 |-  ( ( A  e.  B  /\  A  =/=  (/) )  ->  { A }  e.  ( Fil `  A ) )
 
Theoremfbasweak 21669 A filter base on any set is also a filter base on any larger set. (Contributed by Stefan O'Rear, 2-Aug-2015.)
 |-  ( ( F  e.  ( fBas `  X )  /\  F  C_  ~P Y  /\  Y  e.  V ) 
 ->  F  e.  ( fBas `  Y ) )
 
Theoremsnfbas 21670 Condition for a singleton to be a filter base. (Contributed by Stefan O'Rear, 2-Aug-2015.)
 |-  ( ( A  C_  B  /\  A  =/=  (/)  /\  B  e.  V )  ->  { A }  e.  ( fBas `  B ) )
 
Theoremfsubbas 21671 A condition for a set to generate a filter base. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
 |-  ( X  e.  V  ->  ( ( fi `  A )  e.  ( fBas `  X )  <->  ( A  C_  ~P X  /\  A  =/=  (/)  /\  -.  (/)  e.  ( fi
 `  A ) ) ) )
 
Theoremfbasfip 21672 A filter base has the finite intersection property. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
 |-  ( F  e.  ( fBas `  X )  ->  -.  (/)  e.  ( fi
 `  F ) )
 
Theoremfbunfip 21673* A helpful lemma for showing that certain sets generate filters. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
 |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  Y ) )  ->  ( -.  (/)  e.  ( fi
 `  ( F  u.  G ) )  <->  A. x  e.  F  A. y  e.  G  ( x  i^i  y )  =/=  (/) ) )
 
Theoremfgval 21674* The filter generating class gives a filter for every filter base. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
 |-  ( F  e.  ( fBas `  X )  ->  ( X filGen F )  =  { x  e.  ~P X  |  ( F  i^i  ~P x )  =/=  (/) } )
 
Theoremelfg 21675* A condition for elements of a generated filter. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
 |-  ( F  e.  ( fBas `  X )  ->  ( A  e.  ( X filGen F )  <->  ( A  C_  X  /\  E. x  e.  F  x  C_  A ) ) )
 
Theoremssfg 21676 A filter base is a subset of its generated filter. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
 |-  ( F  e.  ( fBas `  X )  ->  F  C_  ( X filGen F ) )
 
Theoremfgss 21677 A bigger base generates a bigger filter. (Contributed by NM, 5-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
 |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X )  /\  F  C_  G )  ->  ( X filGen F )  C_  ( X filGen G ) )
 
Theoremfgss2 21678* A condition for a filter to be finer than another involving their filter bases. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
 |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X ) )  ->  ( ( X filGen F )  C_  ( X filGen G )  <->  A. x  e.  F  E. y  e.  G  y  C_  x ) )
 
Theoremfgfil 21679 A filter generates itself. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
 |-  ( F  e.  ( Fil `  X )  ->  ( X filGen F )  =  F )
 
Theoremelfilss 21680* An element belongs to a filter iff any element below it does. (Contributed by Stefan O'Rear, 2-Aug-2015.)
 |-  ( ( F  e.  ( Fil `  X )  /\  A  C_  X )  ->  ( A  e.  F  <->  E. t  e.  F  t 
 C_  A ) )
 
Theoremfilfinnfr 21681 No filter containing a finite element is free. (Contributed by Jeff Hankins, 5-Dec-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
 |-  ( ( F  e.  ( Fil `  X )  /\  S  e.  F  /\  S  e.  Fin )  ->  |^| F  =/=  (/) )
 
Theoremfgcl 21682 A generated filter is a filter. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
 |-  ( F  e.  ( fBas `  X )  ->  ( X filGen F )  e.  ( Fil `  X ) )
 
Theoremfgabs 21683 Absorption law for filter generation. (Contributed by Mario Carneiro, 15-Oct-2015.)
 |-  ( ( F  e.  ( fBas `  Y )  /\  Y  C_  X )  ->  ( X filGen ( Y
 filGen F ) )  =  ( X filGen F ) )
 
Theoremneifil 21684 The neighborhoods of a nonempty set is a filter. Example 2 of [BourbakiTop1] p. I.36. (Contributed by FL, 18-Sep-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
 |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  S  =/= 
 (/) )  ->  (
 ( nei `  J ) `  S )  e.  ( Fil `  X ) )
 
Theoremfilunibas 21685 Recover the base set from a filter. (Contributed by Stefan O'Rear, 2-Aug-2015.)
 |-  ( F  e.  ( Fil `  X )  ->  U. F  =  X )
 
Theoremfilunirn 21686 Two ways to express a filter on an unspecified base. (Contributed by Stefan O'Rear, 2-Aug-2015.)
 |-  ( F  e.  U. ran  Fil  <->  F  e.  ( Fil `  U. F ) )
 
Theoremfilconn 21687 A filter gives rise to a connected topology. (Contributed by Jeff Hankins, 6-Dec-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
 |-  ( F  e.  ( Fil `  X )  ->  ( F  u.  { (/) } )  e. Conn )
 
Theoremfbasrn 21688* Given a filter on a domain, produce a filter on the range. (Contributed by Jeff Hankins, 7-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
 |-  C  =  ran  ( x  e.  B  |->  ( F
 " x ) )   =>    |-  ( ( B  e.  ( fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  ->  C  e.  ( fBas `  Y ) )
 
Theoremfiluni 21689* The union of a nonempty set of filters with a common base and closed under pairwise union is a filter. (Contributed by Mario Carneiro, 28-Nov-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
 |-  ( ( F  C_  ( Fil `  X )  /\  F  =/=  (/)  /\  A. f  e.  F  A. g  e.  F  ( f  u.  g )  e.  F )  ->  U. F  e.  ( Fil `  X ) )
 
Theoremtrfil1 21690 Conditions for the trace of a filter  L to be a filter. (Contributed by FL, 2-Sep-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
 |-  ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y )  ->  A  =  U. ( Lt  A ) )
 
Theoremtrfil2 21691* Conditions for the trace of a filter  L to be a filter. (Contributed by FL, 2-Sep-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
 |-  ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y )  ->  ( ( Lt  A )  e.  ( Fil `  A ) 
 <-> 
 A. v  e.  L  ( v  i^i  A )  =/=  (/) ) )
 
Theoremtrfil3 21692 Conditions for the trace of a filter  L to be a filter. (Contributed by Stefan O'Rear, 2-Aug-2015.)
 |-  ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y )  ->  ( ( Lt  A )  e.  ( Fil `  A ) 
 <->  -.  ( Y  \  A )  e.  L ) )
 
Theoremtrfilss 21693 If  A is a member of the filter, then the filter truncated to  A is a subset of the original filter. (Contributed by Mario Carneiro, 15-Oct-2015.)
 |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F ) 
 ->  ( Ft  A )  C_  F )
 
Theoremfgtr 21694 If  A is a member of the filter, then truncating  F to  A and regenerating the behavior outside  A using 
filGen recovers the original filter. (Contributed by Mario Carneiro, 15-Oct-2015.)
 |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F ) 
 ->  ( X filGen ( Ft  A ) )  =  F )
 
Theoremtrfg 21695 The trace operation and the 
filGen operation are inverses to one another in some sense, with  filGen growing the base set and ↾t shrinking it. See fgtr 21694 for the converse cancellation law. (Contributed by Mario Carneiro, 15-Oct-2015.)
 |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  ( ( X filGen F )t  A )  =  F )
 
Theoremtrnei 21696 The trace, over a set  A, of the filter of the neighborhoods of a point  P is a filter iff  P belongs to the closure of  A. (This is trfil2 21691 applied to a filter of neighborhoods.) (Contributed by FL, 15-Sep-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
 |-  ( ( J  e.  (TopOn `  Y )  /\  A  C_  Y  /\  P  e.  Y )  ->  ( P  e.  ( ( cls `  J ) `  A )  <->  ( ( ( nei `  J ) `  { P } )t  A )  e.  ( Fil `  A ) ) )
 
Theoremcfinfil 21697* Relative complements of the finite parts of an infinite set is a filter. When  A  =  NN the set of the relative complements is called Frechet's filter and is used to define the concept of limit of a sequence. (Contributed by FL, 14-Jul-2008.) (Revised by Stefan O'Rear, 2-Aug-2015.)
 |-  ( ( X  e.  V  /\  A  C_  X  /\  -.  A  e.  Fin )  ->  { x  e. 
 ~P X  |  ( A  \  x )  e.  Fin }  e.  ( Fil `  X )
 )
 
Theoremcsdfil 21698* The set of all elements whose complement is dominated by the base set is a filter. (Contributed by Mario Carneiro, 14-Dec-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
 |-  ( ( X  e.  dom  card  /\  om  ~<_  X ) 
 ->  { x  e.  ~P X  |  ( X  \  x )  ~<  X }  e.  ( Fil `  X ) )
 
Theoremsupfil 21699* The supersets of a nonempty set which are also subsets of a given base set form a filter. (Contributed by Jeff Hankins, 12-Nov-2009.) (Revised by Stefan O'Rear, 7-Aug-2015.)
 |-  ( ( A  e.  V  /\  B  C_  A  /\  B  =/=  (/) )  ->  { x  e.  ~P A  |  B  C_  x }  e.  ( Fil `  A ) )
 
Theoremzfbas 21700 The set of upper sets of integers is a filter base on  ZZ, which corresponds to convergence of sequences on  ZZ. (Contributed by Mario Carneiro, 13-Oct-2015.)
 |- 
 ran  ZZ>=  e.  ( fBas `  ZZ )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >