MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfild Structured version   Visualization version   Unicode version

Theorem isfild 21662
Description: Sufficient condition for a set of the form  { x  e.  ~P A  |  ph } to be a filter. (Contributed by Mario Carneiro, 1-Dec-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Hypotheses
Ref Expression
isfild.1  |-  ( ph  ->  ( x  e.  F  <->  ( x  C_  A  /\  ps ) ) )
isfild.2  |-  ( ph  ->  A  e.  _V )
isfild.3  |-  ( ph  ->  [. A  /  x ]. ps )
isfild.4  |-  ( ph  ->  -.  [. (/)  /  x ]. ps )
isfild.5  |-  ( (
ph  /\  y  C_  A  /\  z  C_  y
)  ->  ( [. z  /  x ]. ps  ->  [. y  /  x ]. ps ) )
isfild.6  |-  ( (
ph  /\  y  C_  A  /\  z  C_  A
)  ->  ( ( [. y  /  x ]. ps  /\  [. z  /  x ]. ps )  ->  [. ( y  i^i  z )  /  x ]. ps ) )
Assertion
Ref Expression
isfild  |-  ( ph  ->  F  e.  ( Fil `  A ) )
Distinct variable groups:    x, y, A    z, A    x, F, y    y, z, F    ph, x, y    ph, z    ps, y
Allowed substitution hints:    ps( x, z)

Proof of Theorem isfild
StepHypRef Expression
1 isfild.1 . . . . 5  |-  ( ph  ->  ( x  e.  F  <->  ( x  C_  A  /\  ps ) ) )
2 selpw 4165 . . . . . . 7  |-  ( x  e.  ~P A  <->  x  C_  A
)
32biimpri 218 . . . . . 6  |-  ( x 
C_  A  ->  x  e.  ~P A )
43adantr 481 . . . . 5  |-  ( ( x  C_  A  /\  ps )  ->  x  e. 
~P A )
51, 4syl6bi 243 . . . 4  |-  ( ph  ->  ( x  e.  F  ->  x  e.  ~P A
) )
65ssrdv 3609 . . 3  |-  ( ph  ->  F  C_  ~P A
)
7 isfild.4 . . . 4  |-  ( ph  ->  -.  [. (/)  /  x ]. ps )
8 isfild.2 . . . . . 6  |-  ( ph  ->  A  e.  _V )
91, 8isfildlem 21661 . . . . 5  |-  ( ph  ->  ( (/)  e.  F  <->  (
(/)  C_  A  /\  [. (/)  /  x ]. ps ) ) )
10 simpr 477 . . . . 5  |-  ( (
(/)  C_  A  /\  [. (/)  /  x ]. ps )  ->  [. (/)  /  x ]. ps )
119, 10syl6bi 243 . . . 4  |-  ( ph  ->  ( (/)  e.  F  ->  [. (/)  /  x ]. ps ) )
127, 11mtod 189 . . 3  |-  ( ph  ->  -.  (/)  e.  F )
13 isfild.3 . . . . 5  |-  ( ph  ->  [. A  /  x ]. ps )
14 ssid 3624 . . . . 5  |-  A  C_  A
1513, 14jctil 560 . . . 4  |-  ( ph  ->  ( A  C_  A  /\  [. A  /  x ]. ps ) )
161, 8isfildlem 21661 . . . 4  |-  ( ph  ->  ( A  e.  F  <->  ( A  C_  A  /\  [. A  /  x ]. ps ) ) )
1715, 16mpbird 247 . . 3  |-  ( ph  ->  A  e.  F )
186, 12, 173jca 1242 . 2  |-  ( ph  ->  ( F  C_  ~P A  /\  -.  (/)  e.  F  /\  A  e.  F
) )
19 elpwi 4168 . . . 4  |-  ( y  e.  ~P A  -> 
y  C_  A )
20 isfild.5 . . . . . . . . . . 11  |-  ( (
ph  /\  y  C_  A  /\  z  C_  y
)  ->  ( [. z  /  x ]. ps  ->  [. y  /  x ]. ps ) )
21 simp2 1062 . . . . . . . . . . 11  |-  ( (
ph  /\  y  C_  A  /\  z  C_  y
)  ->  y  C_  A )
2220, 21jctild 566 . . . . . . . . . 10  |-  ( (
ph  /\  y  C_  A  /\  z  C_  y
)  ->  ( [. z  /  x ]. ps  ->  ( y  C_  A  /\  [. y  /  x ]. ps ) ) )
2322adantld 483 . . . . . . . . 9  |-  ( (
ph  /\  y  C_  A  /\  z  C_  y
)  ->  ( (
z  C_  A  /\  [. z  /  x ]. ps )  ->  ( y 
C_  A  /\  [. y  /  x ]. ps )
) )
241, 8isfildlem 21661 . . . . . . . . . 10  |-  ( ph  ->  ( z  e.  F  <->  ( z  C_  A  /\  [. z  /  x ]. ps ) ) )
25243ad2ant1 1082 . . . . . . . . 9  |-  ( (
ph  /\  y  C_  A  /\  z  C_  y
)  ->  ( z  e.  F  <->  ( z  C_  A  /\  [. z  /  x ]. ps ) ) )
261, 8isfildlem 21661 . . . . . . . . . 10  |-  ( ph  ->  ( y  e.  F  <->  ( y  C_  A  /\  [. y  /  x ]. ps ) ) )
27263ad2ant1 1082 . . . . . . . . 9  |-  ( (
ph  /\  y  C_  A  /\  z  C_  y
)  ->  ( y  e.  F  <->  ( y  C_  A  /\  [. y  /  x ]. ps ) ) )
2823, 25, 273imtr4d 283 . . . . . . . 8  |-  ( (
ph  /\  y  C_  A  /\  z  C_  y
)  ->  ( z  e.  F  ->  y  e.  F ) )
29283expa 1265 . . . . . . 7  |-  ( ( ( ph  /\  y  C_  A )  /\  z  C_  y )  ->  (
z  e.  F  -> 
y  e.  F ) )
3029impancom 456 . . . . . 6  |-  ( ( ( ph  /\  y  C_  A )  /\  z  e.  F )  ->  (
z  C_  y  ->  y  e.  F ) )
3130rexlimdva 3031 . . . . 5  |-  ( (
ph  /\  y  C_  A )  ->  ( E. z  e.  F  z  C_  y  ->  y  e.  F ) )
3231ex 450 . . . 4  |-  ( ph  ->  ( y  C_  A  ->  ( E. z  e.  F  z  C_  y  ->  y  e.  F ) ) )
3319, 32syl5 34 . . 3  |-  ( ph  ->  ( y  e.  ~P A  ->  ( E. z  e.  F  z  C_  y  ->  y  e.  F
) ) )
3433ralrimiv 2965 . 2  |-  ( ph  ->  A. y  e.  ~P  A ( E. z  e.  F  z  C_  y  ->  y  e.  F
) )
35 ssinss1 3841 . . . . . . 7  |-  ( y 
C_  A  ->  (
y  i^i  z )  C_  A )
3635ad2antrr 762 . . . . . 6  |-  ( ( ( y  C_  A  /\  [. y  /  x ]. ps )  /\  (
z  C_  A  /\  [. z  /  x ]. ps ) )  ->  (
y  i^i  z )  C_  A )
3736a1i 11 . . . . 5  |-  ( ph  ->  ( ( ( y 
C_  A  /\  [. y  /  x ]. ps )  /\  ( z  C_  A  /\  [. z  /  x ]. ps ) )  -> 
( y  i^i  z
)  C_  A )
)
38 an4 865 . . . . . 6  |-  ( ( ( y  C_  A  /\  [. y  /  x ]. ps )  /\  (
z  C_  A  /\  [. z  /  x ]. ps ) )  <->  ( (
y  C_  A  /\  z  C_  A )  /\  ( [. y  /  x ]. ps  /\  [. z  /  x ]. ps )
) )
39 isfild.6 . . . . . . . 8  |-  ( (
ph  /\  y  C_  A  /\  z  C_  A
)  ->  ( ( [. y  /  x ]. ps  /\  [. z  /  x ]. ps )  ->  [. ( y  i^i  z )  /  x ]. ps ) )
40393expb 1266 . . . . . . 7  |-  ( (
ph  /\  ( y  C_  A  /\  z  C_  A ) )  -> 
( ( [. y  /  x ]. ps  /\  [. z  /  x ]. ps )  ->  [. (
y  i^i  z )  /  x ]. ps )
)
4140expimpd 629 . . . . . 6  |-  ( ph  ->  ( ( ( y 
C_  A  /\  z  C_  A )  /\  ( [. y  /  x ]. ps  /\  [. z  /  x ]. ps )
)  ->  [. ( y  i^i  z )  /  x ]. ps ) )
4238, 41syl5bi 232 . . . . 5  |-  ( ph  ->  ( ( ( y 
C_  A  /\  [. y  /  x ]. ps )  /\  ( z  C_  A  /\  [. z  /  x ]. ps ) )  ->  [. ( y  i^i  z
)  /  x ]. ps ) )
4337, 42jcad 555 . . . 4  |-  ( ph  ->  ( ( ( y 
C_  A  /\  [. y  /  x ]. ps )  /\  ( z  C_  A  /\  [. z  /  x ]. ps ) )  -> 
( ( y  i^i  z )  C_  A  /\  [. ( y  i^i  z )  /  x ]. ps ) ) )
4426, 24anbi12d 747 . . . 4  |-  ( ph  ->  ( ( y  e.  F  /\  z  e.  F )  <->  ( (
y  C_  A  /\  [. y  /  x ]. ps )  /\  (
z  C_  A  /\  [. z  /  x ]. ps ) ) ) )
451, 8isfildlem 21661 . . . 4  |-  ( ph  ->  ( ( y  i^i  z )  e.  F  <->  ( ( y  i^i  z
)  C_  A  /\  [. ( y  i^i  z
)  /  x ]. ps ) ) )
4643, 44, 453imtr4d 283 . . 3  |-  ( ph  ->  ( ( y  e.  F  /\  z  e.  F )  ->  (
y  i^i  z )  e.  F ) )
4746ralrimivv 2970 . 2  |-  ( ph  ->  A. y  e.  F  A. z  e.  F  ( y  i^i  z
)  e.  F )
48 isfil2 21660 . 2  |-  ( F  e.  ( Fil `  A
)  <->  ( ( F 
C_  ~P A  /\  -.  (/) 
e.  F  /\  A  e.  F )  /\  A. y  e.  ~P  A
( E. z  e.  F  z  C_  y  ->  y  e.  F )  /\  A. y  e.  F  A. z  e.  F  ( y  i^i  z )  e.  F
) )
4918, 34, 47, 48syl3anbrc 1246 1  |-  ( ph  ->  F  e.  ( Fil `  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200   [.wsbc 3435    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   ` cfv 5888   Filcfil 21649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-fbas 19743  df-fil 21650
This theorem is referenced by:  snfil  21668  fgcl  21682  filuni  21689  cfinfil  21697  csdfil  21698  supfil  21699  fin1aufil  21736
  Copyright terms: Public domain W3C validator