| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfil2 | Structured version Visualization version Unicode version | ||
| Description: Derive the standard axioms of a filter. (Contributed by Mario Carneiro, 27-Nov-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| Ref | Expression |
|---|---|
| isfil2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | filsspw 21655 |
. . . 4
| |
| 2 | 0nelfil 21653 |
. . . 4
| |
| 3 | filtop 21659 |
. . . 4
| |
| 4 | 1, 2, 3 | 3jca 1242 |
. . 3
|
| 5 | elpwi 4168 |
. . . . 5
| |
| 6 | filss 21657 |
. . . . . . . . 9
| |
| 7 | 6 | 3exp2 1285 |
. . . . . . . 8
|
| 8 | 7 | com23 86 |
. . . . . . 7
|
| 9 | 8 | imp 445 |
. . . . . 6
|
| 10 | 9 | rexlimdv 3030 |
. . . . 5
|
| 11 | 5, 10 | sylan2 491 |
. . . 4
|
| 12 | 11 | ralrimiva 2966 |
. . 3
|
| 13 | filin 21658 |
. . . . 5
| |
| 14 | 13 | 3expb 1266 |
. . . 4
|
| 15 | 14 | ralrimivva 2971 |
. . 3
|
| 16 | 4, 12, 15 | 3jca 1242 |
. 2
|
| 17 | simp11 1091 |
. . . 4
| |
| 18 | simp13 1093 |
. . . . . 6
| |
| 19 | ne0i 3921 |
. . . . . 6
| |
| 20 | 18, 19 | syl 17 |
. . . . 5
|
| 21 | simp12 1092 |
. . . . . 6
| |
| 22 | df-nel 2898 |
. . . . . 6
| |
| 23 | 21, 22 | sylibr 224 |
. . . . 5
|
| 24 | ssid 3624 |
. . . . . . . . 9
| |
| 25 | sseq1 3626 |
. . . . . . . . . 10
| |
| 26 | 25 | rspcev 3309 |
. . . . . . . . 9
|
| 27 | 24, 26 | mpan2 707 |
. . . . . . . 8
|
| 28 | 27 | ralimi 2952 |
. . . . . . 7
|
| 29 | 28 | ralimi 2952 |
. . . . . 6
|
| 30 | 29 | 3ad2ant3 1084 |
. . . . 5
|
| 31 | 20, 23, 30 | 3jca 1242 |
. . . 4
|
| 32 | isfbas2 21639 |
. . . . 5
| |
| 33 | 18, 32 | syl 17 |
. . . 4
|
| 34 | 17, 31, 33 | mpbir2and 957 |
. . 3
|
| 35 | n0 3931 |
. . . . . . . 8
| |
| 36 | elin 3796 |
. . . . . . . . . 10
| |
| 37 | elpwi 4168 |
. . . . . . . . . . 11
| |
| 38 | 37 | anim2i 593 |
. . . . . . . . . 10
|
| 39 | 36, 38 | sylbi 207 |
. . . . . . . . 9
|
| 40 | 39 | eximi 1762 |
. . . . . . . 8
|
| 41 | 35, 40 | sylbi 207 |
. . . . . . 7
|
| 42 | df-rex 2918 |
. . . . . . 7
| |
| 43 | 41, 42 | sylibr 224 |
. . . . . 6
|
| 44 | 43 | imim1i 63 |
. . . . 5
|
| 45 | 44 | ralimi 2952 |
. . . 4
|
| 46 | 45 | 3ad2ant2 1083 |
. . 3
|
| 47 | isfil 21651 |
. . 3
| |
| 48 | 34, 46, 47 | sylanbrc 698 |
. 2
|
| 49 | 16, 48 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fv 5896 df-fbas 19743 df-fil 21650 |
| This theorem is referenced by: isfild 21662 infil 21667 neifil 21684 trfil2 21691 |
| Copyright terms: Public domain | W3C validator |