MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin4 Structured version   Visualization version   Unicode version

Theorem isfin4 9119
Description: Definition of a IV-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
Assertion
Ref Expression
isfin4  |-  ( A  e.  V  ->  ( A  e. FinIV 
<->  -.  E. y ( y  C.  A  /\  y  ~~  A ) ) )
Distinct variable group:    y, A
Allowed substitution hint:    V( y)

Proof of Theorem isfin4
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 psseq2 3695 . . . . 5  |-  ( x  =  A  ->  (
y  C.  x  <->  y  C.  A
) )
2 breq2 4657 . . . . 5  |-  ( x  =  A  ->  (
y  ~~  x  <->  y  ~~  A ) )
31, 2anbi12d 747 . . . 4  |-  ( x  =  A  ->  (
( y  C.  x  /\  y  ~~  x )  <-> 
( y  C.  A  /\  y  ~~  A ) ) )
43exbidv 1850 . . 3  |-  ( x  =  A  ->  ( E. y ( y  C.  x  /\  y  ~~  x
)  <->  E. y ( y 
C.  A  /\  y  ~~  A ) ) )
54notbid 308 . 2  |-  ( x  =  A  ->  ( -.  E. y ( y 
C.  x  /\  y  ~~  x )  <->  -.  E. y
( y  C.  A  /\  y  ~~  A ) ) )
6 df-fin4 9109 . 2  |- FinIV  =  {
x  |  -.  E. y ( y  C.  x  /\  y  ~~  x
) }
75, 6elab2g 3353 1  |-  ( A  e.  V  ->  ( A  e. FinIV 
<->  -.  E. y ( y  C.  A  /\  y  ~~  A ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    C. wpss 3575   class class class wbr 4653    ~~ cen 7952  FinIVcfin4 9102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-fin4 9109
This theorem is referenced by:  fin4i  9120  fin4en1  9131  ssfin4  9132  infpssALT  9135  isfin4-2  9136
  Copyright terms: Public domain W3C validator