MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfin4 Structured version   Visualization version   Unicode version

Theorem ssfin4 9132
Description: Dedekind finite sets have Dedekind finite subsets. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 6-May-2015.) (Revised by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
ssfin4  |-  ( ( A  e. FinIV  /\  B  C_  A
)  ->  B  e. FinIV )

Proof of Theorem ssfin4
Dummy variables  c  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 790 . . . 4  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  (
x  C.  B  /\  x  ~~  B ) )  ->  A  e. FinIV )
2 pssss 3702 . . . . . . . . 9  |-  ( x 
C.  B  ->  x  C_  B )
3 simpr 477 . . . . . . . . 9  |-  ( ( A  e. FinIV  /\  B  C_  A
)  ->  B  C_  A
)
42, 3sylan9ssr 3617 . . . . . . . 8  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  x  C.  B )  ->  x  C_  A )
5 difssd 3738 . . . . . . . 8  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  x  C.  B )  ->  ( A  \  B )  C_  A )
64, 5unssd 3789 . . . . . . 7  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  x  C.  B )  ->  (
x  u.  ( A 
\  B ) ) 
C_  A )
7 pssnel 4039 . . . . . . . . 9  |-  ( x 
C.  B  ->  E. c
( c  e.  B  /\  -.  c  e.  x
) )
87adantl 482 . . . . . . . 8  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  x  C.  B )  ->  E. c
( c  e.  B  /\  -.  c  e.  x
) )
9 simpllr 799 . . . . . . . . . . 11  |-  ( ( ( ( A  e. FinIV  /\  B  C_  A )  /\  x  C.  B )  /\  ( c  e.  B  /\  -.  c  e.  x ) )  ->  B  C_  A )
10 simprl 794 . . . . . . . . . . 11  |-  ( ( ( ( A  e. FinIV  /\  B  C_  A )  /\  x  C.  B )  /\  ( c  e.  B  /\  -.  c  e.  x ) )  -> 
c  e.  B )
119, 10sseldd 3604 . . . . . . . . . 10  |-  ( ( ( ( A  e. FinIV  /\  B  C_  A )  /\  x  C.  B )  /\  ( c  e.  B  /\  -.  c  e.  x ) )  -> 
c  e.  A )
12 simprr 796 . . . . . . . . . . 11  |-  ( ( ( ( A  e. FinIV  /\  B  C_  A )  /\  x  C.  B )  /\  ( c  e.  B  /\  -.  c  e.  x ) )  ->  -.  c  e.  x
)
13 elndif 3734 . . . . . . . . . . . 12  |-  ( c  e.  B  ->  -.  c  e.  ( A  \  B ) )
1413ad2antrl 764 . . . . . . . . . . 11  |-  ( ( ( ( A  e. FinIV  /\  B  C_  A )  /\  x  C.  B )  /\  ( c  e.  B  /\  -.  c  e.  x ) )  ->  -.  c  e.  ( A  \  B ) )
15 ioran 511 . . . . . . . . . . . 12  |-  ( -.  ( c  e.  x  \/  c  e.  ( A  \  B ) )  <-> 
( -.  c  e.  x  /\  -.  c  e.  ( A  \  B
) ) )
16 elun 3753 . . . . . . . . . . . 12  |-  ( c  e.  ( x  u.  ( A  \  B
) )  <->  ( c  e.  x  \/  c  e.  ( A  \  B
) ) )
1715, 16xchnxbir 323 . . . . . . . . . . 11  |-  ( -.  c  e.  ( x  u.  ( A  \  B ) )  <->  ( -.  c  e.  x  /\  -.  c  e.  ( A  \  B ) ) )
1812, 14, 17sylanbrc 698 . . . . . . . . . 10  |-  ( ( ( ( A  e. FinIV  /\  B  C_  A )  /\  x  C.  B )  /\  ( c  e.  B  /\  -.  c  e.  x ) )  ->  -.  c  e.  (
x  u.  ( A 
\  B ) ) )
19 nelneq2 2726 . . . . . . . . . 10  |-  ( ( c  e.  A  /\  -.  c  e.  (
x  u.  ( A 
\  B ) ) )  ->  -.  A  =  ( x  u.  ( A  \  B
) ) )
2011, 18, 19syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( A  e. FinIV  /\  B  C_  A )  /\  x  C.  B )  /\  ( c  e.  B  /\  -.  c  e.  x ) )  ->  -.  A  =  (
x  u.  ( A 
\  B ) ) )
21 eqcom 2629 . . . . . . . . 9  |-  ( A  =  ( x  u.  ( A  \  B
) )  <->  ( x  u.  ( A  \  B
) )  =  A )
2220, 21sylnib 318 . . . . . . . 8  |-  ( ( ( ( A  e. FinIV  /\  B  C_  A )  /\  x  C.  B )  /\  ( c  e.  B  /\  -.  c  e.  x ) )  ->  -.  ( x  u.  ( A  \  B ) )  =  A )
238, 22exlimddv 1863 . . . . . . 7  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  x  C.  B )  ->  -.  ( x  u.  ( A  \  B ) )  =  A )
24 dfpss2 3692 . . . . . . 7  |-  ( ( x  u.  ( A 
\  B ) ) 
C.  A  <->  ( (
x  u.  ( A 
\  B ) ) 
C_  A  /\  -.  ( x  u.  ( A  \  B ) )  =  A ) )
256, 23, 24sylanbrc 698 . . . . . 6  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  x  C.  B )  ->  (
x  u.  ( A 
\  B ) ) 
C.  A )
2625adantrr 753 . . . . 5  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  (
x  C.  B  /\  x  ~~  B ) )  ->  ( x  u.  ( A  \  B
) )  C.  A
)
27 simprr 796 . . . . . . 7  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  (
x  C.  B  /\  x  ~~  B ) )  ->  x  ~~  B
)
28 difexg 4808 . . . . . . . 8  |-  ( A  e. FinIV  ->  ( A  \  B )  e.  _V )
29 enrefg 7987 . . . . . . . 8  |-  ( ( A  \  B )  e.  _V  ->  ( A  \  B )  ~~  ( A  \  B ) )
301, 28, 293syl 18 . . . . . . 7  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  (
x  C.  B  /\  x  ~~  B ) )  ->  ( A  \  B )  ~~  ( A  \  B ) )
312ad2antrl 764 . . . . . . . . . 10  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  (
x  C.  B  /\  x  ~~  B ) )  ->  x  C_  B
)
32 ssinss1 3841 . . . . . . . . . 10  |-  ( x 
C_  B  ->  (
x  i^i  A )  C_  B )
3331, 32syl 17 . . . . . . . . 9  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  (
x  C.  B  /\  x  ~~  B ) )  ->  ( x  i^i 
A )  C_  B
)
34 inssdif0 3947 . . . . . . . . 9  |-  ( ( x  i^i  A ) 
C_  B  <->  ( x  i^i  ( A  \  B
) )  =  (/) )
3533, 34sylib 208 . . . . . . . 8  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  (
x  C.  B  /\  x  ~~  B ) )  ->  ( x  i^i  ( A  \  B
) )  =  (/) )
36 disjdif 4040 . . . . . . . 8  |-  ( B  i^i  ( A  \  B ) )  =  (/)
3735, 36jctir 561 . . . . . . 7  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  (
x  C.  B  /\  x  ~~  B ) )  ->  ( ( x  i^i  ( A  \  B ) )  =  (/)  /\  ( B  i^i  ( A  \  B ) )  =  (/) ) )
38 unen 8040 . . . . . . 7  |-  ( ( ( x  ~~  B  /\  ( A  \  B
)  ~~  ( A  \  B ) )  /\  ( ( x  i^i  ( A  \  B
) )  =  (/)  /\  ( B  i^i  ( A  \  B ) )  =  (/) ) )  -> 
( x  u.  ( A  \  B ) ) 
~~  ( B  u.  ( A  \  B ) ) )
3927, 30, 37, 38syl21anc 1325 . . . . . 6  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  (
x  C.  B  /\  x  ~~  B ) )  ->  ( x  u.  ( A  \  B
) )  ~~  ( B  u.  ( A  \  B ) ) )
40 simplr 792 . . . . . . 7  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  (
x  C.  B  /\  x  ~~  B ) )  ->  B  C_  A
)
41 undif 4049 . . . . . . 7  |-  ( B 
C_  A  <->  ( B  u.  ( A  \  B
) )  =  A )
4240, 41sylib 208 . . . . . 6  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  (
x  C.  B  /\  x  ~~  B ) )  ->  ( B  u.  ( A  \  B ) )  =  A )
4339, 42breqtrd 4679 . . . . 5  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  (
x  C.  B  /\  x  ~~  B ) )  ->  ( x  u.  ( A  \  B
) )  ~~  A
)
44 fin4i 9120 . . . . 5  |-  ( ( ( x  u.  ( A  \  B ) ) 
C.  A  /\  (
x  u.  ( A 
\  B ) ) 
~~  A )  ->  -.  A  e. FinIV )
4526, 43, 44syl2anc 693 . . . 4  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  (
x  C.  B  /\  x  ~~  B ) )  ->  -.  A  e. FinIV )
461, 45pm2.65da 600 . . 3  |-  ( ( A  e. FinIV  /\  B  C_  A
)  ->  -.  (
x  C.  B  /\  x  ~~  B ) )
4746nexdv 1864 . 2  |-  ( ( A  e. FinIV  /\  B  C_  A
)  ->  -.  E. x
( x  C.  B  /\  x  ~~  B ) )
48 ssexg 4804 . . . 4  |-  ( ( B  C_  A  /\  A  e. FinIV )  ->  B  e.  _V )
4948ancoms 469 . . 3  |-  ( ( A  e. FinIV  /\  B  C_  A
)  ->  B  e.  _V )
50 isfin4 9119 . . 3  |-  ( B  e.  _V  ->  ( B  e. FinIV 
<->  -.  E. x ( x  C.  B  /\  x  ~~  B ) ) )
5149, 50syl 17 . 2  |-  ( ( A  e. FinIV  /\  B  C_  A
)  ->  ( B  e. FinIV  <->  -. 
E. x ( x 
C.  B  /\  x  ~~  B ) ) )
5247, 51mpbird 247 1  |-  ( ( A  e. FinIV  /\  B  C_  A
)  ->  B  e. FinIV )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574    C. wpss 3575   (/)c0 3915   class class class wbr 4653    ~~ cen 7952  FinIVcfin4 9102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-en 7956  df-fin4 9109
This theorem is referenced by:  domfin4  9133
  Copyright terms: Public domain W3C validator