Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnmlssfg Structured version   Visualization version   Unicode version

Theorem lnmlssfg 37650
Description: A submodule of Noetherian module is finitely generated. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
lnmlssfg.s  |-  S  =  ( LSubSp `  M )
lnmlssfg.r  |-  R  =  ( Ms  U )
Assertion
Ref Expression
lnmlssfg  |-  ( ( M  e. LNoeM  /\  U  e.  S )  ->  R  e. LFinGen )

Proof of Theorem lnmlssfg
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 lnmlssfg.s . . . 4  |-  S  =  ( LSubSp `  M )
21islnm 37647 . . 3  |-  ( M  e. LNoeM 
<->  ( M  e.  LMod  /\ 
A. a  e.  S  ( Ms  a )  e. LFinGen ) )
32simprbi 480 . 2  |-  ( M  e. LNoeM  ->  A. a  e.  S  ( Ms  a )  e. LFinGen )
4 oveq2 6658 . . . . 5  |-  ( a  =  U  ->  ( Ms  a )  =  ( Ms  U ) )
5 lnmlssfg.r . . . . 5  |-  R  =  ( Ms  U )
64, 5syl6eqr 2674 . . . 4  |-  ( a  =  U  ->  ( Ms  a )  =  R )
76eleq1d 2686 . . 3  |-  ( a  =  U  ->  (
( Ms  a )  e. LFinGen  <->  R  e. LFinGen ) )
87rspcv 3305 . 2  |-  ( U  e.  S  ->  ( A. a  e.  S  ( Ms  a )  e. LFinGen  ->  R  e. LFinGen ) )
93, 8mpan9 486 1  |-  ( ( M  e. LNoeM  /\  U  e.  S )  ->  R  e. LFinGen )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   ` cfv 5888  (class class class)co 6650   ↾s cress 15858   LModclmod 18863   LSubSpclss 18932  LFinGenclfig 37637  LNoeMclnm 37645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-lnm 37646
This theorem is referenced by:  lnmlsslnm  37651  lnmfg  37652  lnmepi  37655  lmhmlnmsplit  37657  lnrfgtr  37690
  Copyright terms: Public domain W3C validator