Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismaxidl Structured version   Visualization version   Unicode version

Theorem ismaxidl 33839
Description: The predicate "is a maximal ideal". (Contributed by Jeff Madsen, 5-Jan-2011.)
Hypotheses
Ref Expression
ismaxidl.1  |-  G  =  ( 1st `  R
)
ismaxidl.2  |-  X  =  ran  G
Assertion
Ref Expression
ismaxidl  |-  ( R  e.  RingOps  ->  ( M  e.  ( MaxIdl `  R )  <->  ( M  e.  ( Idl `  R )  /\  M  =/=  X  /\  A. j  e.  ( Idl `  R
) ( M  C_  j  ->  ( j  =  M  \/  j  =  X ) ) ) ) )
Distinct variable groups:    R, j    j, M
Allowed substitution hints:    G( j)    X( j)

Proof of Theorem ismaxidl
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 ismaxidl.1 . . . 4  |-  G  =  ( 1st `  R
)
2 ismaxidl.2 . . . 4  |-  X  =  ran  G
31, 2maxidlval 33838 . . 3  |-  ( R  e.  RingOps  ->  ( MaxIdl `  R
)  =  { i  e.  ( Idl `  R
)  |  ( i  =/=  X  /\  A. j  e.  ( Idl `  R ) ( i 
C_  j  ->  (
j  =  i  \/  j  =  X ) ) ) } )
43eleq2d 2687 . 2  |-  ( R  e.  RingOps  ->  ( M  e.  ( MaxIdl `  R )  <->  M  e.  { i  e.  ( Idl `  R
)  |  ( i  =/=  X  /\  A. j  e.  ( Idl `  R ) ( i 
C_  j  ->  (
j  =  i  \/  j  =  X ) ) ) } ) )
5 neeq1 2856 . . . . 5  |-  ( i  =  M  ->  (
i  =/=  X  <->  M  =/=  X ) )
6 sseq1 3626 . . . . . . 7  |-  ( i  =  M  ->  (
i  C_  j  <->  M  C_  j
) )
7 eqeq2 2633 . . . . . . . 8  |-  ( i  =  M  ->  (
j  =  i  <->  j  =  M ) )
87orbi1d 739 . . . . . . 7  |-  ( i  =  M  ->  (
( j  =  i  \/  j  =  X )  <->  ( j  =  M  \/  j  =  X ) ) )
96, 8imbi12d 334 . . . . . 6  |-  ( i  =  M  ->  (
( i  C_  j  ->  ( j  =  i  \/  j  =  X ) )  <->  ( M  C_  j  ->  ( j  =  M  \/  j  =  X ) ) ) )
109ralbidv 2986 . . . . 5  |-  ( i  =  M  ->  ( A. j  e.  ( Idl `  R ) ( i  C_  j  ->  ( j  =  i  \/  j  =  X ) )  <->  A. j  e.  ( Idl `  R ) ( M  C_  j  ->  ( j  =  M  \/  j  =  X ) ) ) )
115, 10anbi12d 747 . . . 4  |-  ( i  =  M  ->  (
( i  =/=  X  /\  A. j  e.  ( Idl `  R ) ( i  C_  j  ->  ( j  =  i  \/  j  =  X ) ) )  <->  ( M  =/=  X  /\  A. j  e.  ( Idl `  R
) ( M  C_  j  ->  ( j  =  M  \/  j  =  X ) ) ) ) )
1211elrab 3363 . . 3  |-  ( M  e.  { i  e.  ( Idl `  R
)  |  ( i  =/=  X  /\  A. j  e.  ( Idl `  R ) ( i 
C_  j  ->  (
j  =  i  \/  j  =  X ) ) ) }  <->  ( M  e.  ( Idl `  R
)  /\  ( M  =/=  X  /\  A. j  e.  ( Idl `  R
) ( M  C_  j  ->  ( j  =  M  \/  j  =  X ) ) ) ) )
13 3anass 1042 . . 3  |-  ( ( M  e.  ( Idl `  R )  /\  M  =/=  X  /\  A. j  e.  ( Idl `  R
) ( M  C_  j  ->  ( j  =  M  \/  j  =  X ) ) )  <-> 
( M  e.  ( Idl `  R )  /\  ( M  =/= 
X  /\  A. j  e.  ( Idl `  R
) ( M  C_  j  ->  ( j  =  M  \/  j  =  X ) ) ) ) )
1412, 13bitr4i 267 . 2  |-  ( M  e.  { i  e.  ( Idl `  R
)  |  ( i  =/=  X  /\  A. j  e.  ( Idl `  R ) ( i 
C_  j  ->  (
j  =  i  \/  j  =  X ) ) ) }  <->  ( M  e.  ( Idl `  R
)  /\  M  =/=  X  /\  A. j  e.  ( Idl `  R
) ( M  C_  j  ->  ( j  =  M  \/  j  =  X ) ) ) )
154, 14syl6bb 276 1  |-  ( R  e.  RingOps  ->  ( M  e.  ( MaxIdl `  R )  <->  ( M  e.  ( Idl `  R )  /\  M  =/=  X  /\  A. j  e.  ( Idl `  R
) ( M  C_  j  ->  ( j  =  M  \/  j  =  X ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916    C_ wss 3574   ran crn 5115   ` cfv 5888   1stc1st 7166   RingOpscrngo 33693   Idlcidl 33806   MaxIdlcmaxidl 33808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-maxidl 33811
This theorem is referenced by:  maxidlidl  33840  maxidlnr  33841  maxidlmax  33842
  Copyright terms: Public domain W3C validator