MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnrg Structured version   Visualization version   Unicode version

Theorem isnrg 22464
Description: A normed ring is a ring with a norm that makes it into a normed group, and such that the norm is an absolute value on the ring. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
isnrg.1  |-  N  =  ( norm `  R
)
isnrg.2  |-  A  =  (AbsVal `  R )
Assertion
Ref Expression
isnrg  |-  ( R  e. NrmRing 
<->  ( R  e. NrmGrp  /\  N  e.  A ) )

Proof of Theorem isnrg
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . 4  |-  ( r  =  R  ->  ( norm `  r )  =  ( norm `  R
) )
2 isnrg.1 . . . 4  |-  N  =  ( norm `  R
)
31, 2syl6eqr 2674 . . 3  |-  ( r  =  R  ->  ( norm `  r )  =  N )
4 fveq2 6191 . . . 4  |-  ( r  =  R  ->  (AbsVal `  r )  =  (AbsVal `  R ) )
5 isnrg.2 . . . 4  |-  A  =  (AbsVal `  R )
64, 5syl6eqr 2674 . . 3  |-  ( r  =  R  ->  (AbsVal `  r )  =  A )
73, 6eleq12d 2695 . 2  |-  ( r  =  R  ->  (
( norm `  r )  e.  (AbsVal `  r )  <->  N  e.  A ) )
8 df-nrg 22390 . 2  |- NrmRing  =  {
r  e. NrmGrp  |  ( norm `  r )  e.  (AbsVal `  r ) }
97, 8elrab2 3366 1  |-  ( R  e. NrmRing 
<->  ( R  e. NrmGrp  /\  N  e.  A ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   ` cfv 5888  AbsValcabv 18816   normcnm 22381  NrmGrpcngp 22382  NrmRingcnrg 22384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-nrg 22390
This theorem is referenced by:  nrgabv  22465  nrgngp  22466  subrgnrg  22477  tngnrg  22478  cnnrg  22584  zhmnrg  30011
  Copyright terms: Public domain W3C validator