HomeHome Metamath Proof Explorer
Theorem List (p. 225 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 22401-22500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremisngp2 22401 The property of being a normed group. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  N  =  ( norm `  G )   &    |-  .-  =  ( -g `  G )   &    |-  D  =  ( dist `  G )   &    |-  X  =  ( Base `  G )   &    |-  E  =  ( D  |`  ( X  X.  X ) )   =>    |-  ( G  e. NrmGrp  <->  ( G  e.  Grp  /\  G  e.  MetSp  /\  ( N  o.  .-  )  =  E ) )
 
Theoremisngp3 22402* The property of being a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  N  =  ( norm `  G )   &    |-  .-  =  ( -g `  G )   &    |-  D  =  ( dist `  G )   &    |-  X  =  ( Base `  G )   =>    |-  ( G  e. NrmGrp  <->  ( G  e.  Grp  /\  G  e.  MetSp  /\  A. x  e.  X  A. y  e.  X  ( x D y )  =  ( N `  ( x 
 .-  y ) ) ) )
 
Theoremngpgrp 22403 A normed group is a group. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  ( G  e. NrmGrp  ->  G  e.  Grp )
 
Theoremngpms 22404 A normed group is a metric space. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  ( G  e. NrmGrp  ->  G  e.  MetSp )
 
Theoremngpxms 22405 A normed group is a metric space. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  ( G  e. NrmGrp  ->  G  e.  *MetSp )
 
Theoremngptps 22406 A normed group is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.)
 |-  ( G  e. NrmGrp  ->  G  e.  TopSp )
 
Theoremngpmet 22407 The (induced) metric of a normed group is a metric. Part of Definition 2.2-1 of [Kreyszig] p. 58. (Contributed by NM, 4-Dec-2006.) (Revised by AV, 14-Oct-2021.)
 |-  X  =  ( Base `  G )   &    |-  D  =  ( ( dist `  G )  |`  ( X  X.  X ) )   =>    |-  ( G  e. NrmGrp  ->  D  e.  ( Met `  X ) )
 
Theoremngpds 22408 Value of the distance function in terms of the norm of a normed group. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 28-Nov-2006.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  N  =  ( norm `  G )   &    |-  X  =  (
 Base `  G )   &    |-  .-  =  ( -g `  G )   &    |-  D  =  ( dist `  G )   =>    |-  ( ( G  e. NrmGrp  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  ( N `  ( A  .-  B ) ) )
 
Theoremngpdsr 22409 Value of the distance function in terms of the norm of a normed group. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  N  =  ( norm `  G )   &    |-  X  =  (
 Base `  G )   &    |-  .-  =  ( -g `  G )   &    |-  D  =  ( dist `  G )   =>    |-  ( ( G  e. NrmGrp  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  ( N `  ( B  .-  A ) ) )
 
Theoremngpds2 22410 Write the distance between two points in terms of distance from zero. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  X  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .-  =  ( -g `  G )   &    |-  D  =  ( dist `  G )   =>    |-  ( ( G  e. NrmGrp  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  ( ( A  .-  B ) D  .0.  ) )
 
Theoremngpds2r 22411 Write the distance between two points in terms of distance from zero. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  X  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .-  =  ( -g `  G )   &    |-  D  =  ( dist `  G )   =>    |-  ( ( G  e. NrmGrp  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  ( ( B  .-  A ) D  .0.  ) )
 
Theoremngpds3 22412 Write the distance between two points in terms of distance from zero. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  X  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .-  =  ( -g `  G )   &    |-  D  =  ( dist `  G )   =>    |-  ( ( G  e. NrmGrp  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  (  .0.  D ( A  .-  B ) ) )
 
Theoremngpds3r 22413 Write the distance between two points in terms of distance from zero. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  X  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .-  =  ( -g `  G )   &    |-  D  =  ( dist `  G )   =>    |-  ( ( G  e. NrmGrp  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  (  .0.  D ( B  .-  A ) ) )
 
Theoremngprcan 22414 Cancel right addition inside a distance calculation. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  X  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  D  =  ( dist `  G )   =>    |-  (
 ( G  e. NrmGrp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
 )  ->  ( ( A  .+  C ) D ( B  .+  C ) )  =  ( A D B ) )
 
Theoremngplcan 22415 Cancel left addition inside a distance calculation. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  X  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  D  =  ( dist `  G )   =>    |-  (
 ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
 )  ->  ( ( C  .+  A ) D ( C  .+  B ) )  =  ( A D B ) )
 
Theoremisngp4 22416* Express the property of being a normed group purely in terms of right-translation invariance of the metric instead of using the definition of norm (which itself uses the metric). (Contributed by Mario Carneiro, 29-Oct-2015.)
 |-  X  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  D  =  ( dist `  G )   =>    |-  ( G  e. NrmGrp  <->  ( G  e.  Grp  /\  G  e.  MetSp  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( ( x 
 .+  z ) D ( y  .+  z
 ) )  =  ( x D y ) ) )
 
Theoremngpinvds 22417 Two elements are the same distance apart as their inverses. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  X  =  ( Base `  G )   &    |-  I  =  ( invg `  G )   &    |-  D  =  ( dist `  G )   =>    |-  ( ( ( G  e. NrmGrp  /\  G  e.  Abel ) 
 /\  ( A  e.  X  /\  B  e.  X ) )  ->  ( ( I `  A ) D ( I `  B ) )  =  ( A D B ) )
 
Theoremngpsubcan 22418 Cancel right subtraction inside a distance calculation. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  X  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   &    |-  D  =  ( dist `  G )   =>    |-  (
 ( G  e. NrmGrp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
 )  ->  ( ( A  .-  C ) D ( B  .-  C ) )  =  ( A D B ) )
 
Theoremnmf 22419 The norm on a normed group is a function into the reals. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  X  =  ( Base `  G )   &    |-  N  =  (
 norm `  G )   =>    |-  ( G  e. NrmGrp  ->  N : X --> RR )
 
Theoremnmcl 22420 The norm of a normed group is closed in the reals. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  X  =  ( Base `  G )   &    |-  N  =  (
 norm `  G )   =>    |-  ( ( G  e. NrmGrp  /\  A  e.  X )  ->  ( N `  A )  e.  RR )
 
Theoremnmge0 22421 The norm of a normed group is nonnegative. Second part of Problem 2 of [Kreyszig] p. 64. (Contributed by NM, 28-Nov-2006.) (Revised by Mario Carneiro, 4-Oct-2015.)
 |-  X  =  ( Base `  G )   &    |-  N  =  (
 norm `  G )   =>    |-  ( ( G  e. NrmGrp  /\  A  e.  X )  ->  0  <_  ( N `  A ) )
 
Theoremnmeq0 22422 The identity is the only element of the group with zero norm. First part of Problem 2 of [Kreyszig] p. 64. (Contributed by NM, 24-Nov-2006.) (Revised by Mario Carneiro, 4-Oct-2015.)
 |-  X  =  ( Base `  G )   &    |-  N  =  (
 norm `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e. NrmGrp  /\  A  e.  X ) 
 ->  ( ( N `  A )  =  0  <->  A  =  .0.  ) )
 
Theoremnmne0 22423 The norm of a nonzero element is nonzero. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  X  =  ( Base `  G )   &    |-  N  =  (
 norm `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e. NrmGrp  /\  A  e.  X  /\  A  =/=  .0.  )  ->  ( N `  A )  =/=  0 )
 
Theoremnmrpcl 22424 The norm of a nonzero element is a positive real. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  X  =  ( Base `  G )   &    |-  N  =  (
 norm `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e. NrmGrp  /\  A  e.  X  /\  A  =/=  .0.  )  ->  ( N `  A )  e.  RR+ )
 
Theoremnminv 22425 The norm of a negated element is the same as the norm of the original element. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  X  =  ( Base `  G )   &    |-  N  =  (
 norm `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( ( G  e. NrmGrp  /\  A  e.  X ) 
 ->  ( N `  ( I `  A ) )  =  ( N `  A ) )
 
Theoremnmmtri 22426 The triangle inequality for the norm of a subtraction. (Contributed by NM, 27-Dec-2007.) (Revised by Mario Carneiro, 4-Oct-2015.)
 |-  X  =  ( Base `  G )   &    |-  N  =  (
 norm `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e. NrmGrp  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A  .-  B ) ) 
 <_  ( ( N `  A )  +  ( N `  B ) ) )
 
Theoremnmsub 22427 The norm of the difference between two elements. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  X  =  ( Base `  G )   &    |-  N  =  (
 norm `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e. NrmGrp  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A  .-  B ) )  =  ( N `  ( B  .-  A ) ) )
 
Theoremnmrtri 22428 Reverse triangle inequality for the norm of a subtraction. Problem 3 of [Kreyszig] p. 64. (Contributed by NM, 4-Dec-2006.) (Revised by Mario Carneiro, 4-Oct-2015.)
 |-  X  =  ( Base `  G )   &    |-  N  =  (
 norm `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e. NrmGrp  /\  A  e.  X  /\  B  e.  X )  ->  ( abs `  (
 ( N `  A )  -  ( N `  B ) ) ) 
 <_  ( N `  ( A  .-  B ) ) )
 
Theoremnm2dif 22429 Inequality for the difference of norms. (Contributed by Mario Carneiro, 6-Oct-2015.)
 |-  X  =  ( Base `  G )   &    |-  N  =  (
 norm `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e. NrmGrp  /\  A  e.  X  /\  B  e.  X )  ->  ( ( N `  A )  -  ( N `  B ) ) 
 <_  ( N `  ( A  .-  B ) ) )
 
Theoremnmtri 22430 The triangle inequality for the norm of a sum. (Contributed by NM, 11-Nov-2006.) (Revised by Mario Carneiro, 4-Oct-2015.)
 |-  X  =  ( Base `  G )   &    |-  N  =  (
 norm `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  (
 ( G  e. NrmGrp  /\  A  e.  X  /\  B  e.  X )  ->  ( N `
  ( A  .+  B ) )  <_  ( ( N `  A )  +  ( N `  B ) ) )
 
Theoremnmtri2 22431 Triangle inequality for the norm of two subtractions. (Contributed by NM, 24-Feb-2008.) (Revised by AV, 8-Oct-2021.)
 |-  X  =  ( Base `  G )   &    |-  N  =  (
 norm `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e. NrmGrp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
 )  ->  ( N `  ( A  .-  C ) )  <_  ( ( N `  ( A 
 .-  B ) )  +  ( N `  ( B  .-  C ) ) ) )
 
Theoremngpi 22432* The properties of a normed group, which is a group accompanied by a norm. (Contributed by AV, 7-Oct-2021.)
 |-  V  =  ( Base `  W )   &    |-  N  =  (
 norm `  W )   &    |-  .-  =  ( -g `  W )   &    |-  .0.  =  ( 0g `  W )   =>    |-  ( W  e. NrmGrp  ->  ( W  e.  Grp  /\  N : V --> RR  /\  A. x  e.  V  ( ( ( N `  x )  =  0  <->  x  =  .0.  )  /\  A. y  e.  V  ( N `  ( x 
 .-  y ) ) 
 <_  ( ( N `  x )  +  ( N `  y ) ) ) ) )
 
Theoremnm0 22433 Norm of the identity element. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  N  =  ( norm `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( G  e. NrmGrp  ->  ( N `  .0.  )  =  0 )
 
Theoremnmgt0 22434 The norm of a nonzero element is a positive real. (Contributed by NM, 20-Nov-2007.) (Revised by AV, 8-Oct-2021.)
 |-  X  =  ( Base `  G )   &    |-  N  =  (
 norm `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e. NrmGrp  /\  A  e.  X ) 
 ->  ( A  =/=  .0.  <->  0  <  ( N `  A ) ) )
 
Theoremsgrim 22435 The induced metric on a subgroup is the induced metric on the parent group equipped with a norm. (Contributed by NM, 1-Feb-2008.) (Revised by AV, 19-Oct-2021.)
 |-  X  =  ( Ts  U )   &    |-  D  =  (
 dist `  T )   &    |-  E  =  ( dist `  X )   =>    |-  ( U  e.  S  ->  E  =  D )
 
Theoremsgrimval 22436 The induced metric on a subgroup in terms of the induced metric on the parent normed group. (Contributed by NM, 1-Feb-2008.) (Revised by AV, 19-Oct-2021.)
 |-  X  =  ( Ts  U )   &    |-  D  =  (
 dist `  T )   &    |-  E  =  ( dist `  X )   &    |-  T  =  ( G toNrmGrp  N )   &    |-  N  =  ( norm `  G )   &    |-  S  =  (SubGrp `  T )   =>    |-  (
 ( ( G  e. NrmGrp  /\  U  e.  S ) 
 /\  ( A  e.  U  /\  B  e.  U ) )  ->  ( A E B )  =  ( A D B ) )
 
Theoremsubgnm 22437 The norm in a subgroup. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  H  =  ( Gs  A )   &    |-  N  =  (
 norm `  G )   &    |-  M  =  ( norm `  H )   =>    |-  ( A  e.  (SubGrp `  G )  ->  M  =  ( N  |`  A )
 )
 
Theoremsubgnm2 22438 A substructure assigns the same values to the norms of elements of a subgroup. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  H  =  ( Gs  A )   &    |-  N  =  (
 norm `  G )   &    |-  M  =  ( norm `  H )   =>    |-  (
 ( A  e.  (SubGrp `  G )  /\  X  e.  A )  ->  ( M `  X )  =  ( N `  X ) )
 
Theoremsubgngp 22439 A normed group restricted to a subgroup is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  H  =  ( Gs  A )   =>    |-  ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G ) )  ->  H  e. NrmGrp )
 
Theoremngptgp 22440 A normed abelian group is a topological group (with the topology induced by the metric induced by the norm). (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  ( ( G  e. NrmGrp  /\  G  e.  Abel )  ->  G  e.  TopGrp )
 
Theoremngppropd 22441* Property deduction for a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  L ) y ) )   &    |-  ( ph  ->  ( ( dist `  K )  |`  ( B  X.  B ) )  =  ( (
 dist `  L )  |`  ( B  X.  B ) ) )   &    |-  ( ph  ->  (
 TopOpen `  K )  =  ( TopOpen `  L )
 )   =>    |-  ( ph  ->  ( K  e. NrmGrp  <->  L  e. NrmGrp ) )
 
Theoremreldmtng 22442 The function toNrmGrp is a two-argument function. (Contributed by Mario Carneiro, 8-Oct-2015.)
 |- 
 Rel  dom toNrmGrp
 
Theoremtngval 22443 Value of the function which augments a given structure  G with a norm  N. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  T  =  ( G toNrmGrp  N )   &    |-  .-  =  ( -g `  G )   &    |-  D  =  ( N  o.  .-  )   &    |-  J  =  ( MetOpen `  D )   =>    |-  ( ( G  e.  V  /\  N  e.  W )  ->  T  =  ( ( G sSet  <. ( dist ` 
 ndx ) ,  D >. ) sSet  <. (TopSet `  ndx ) ,  J >. ) )
 
Theoremtnglem 22444 Lemma for tngbas 22445 and similar theorems. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  T  =  ( G toNrmGrp  N )   &    |-  E  = Slot  K   &    |-  K  e.  NN   &    |-  K  <  9   =>    |-  ( N  e.  V  ->  ( E `  G )  =  ( E `  T ) )
 
Theoremtngbas 22445 The base set of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  T  =  ( G toNrmGrp  N )   &    |-  B  =  (
 Base `  G )   =>    |-  ( N  e.  V  ->  B  =  (
 Base `  T ) )
 
Theoremtngplusg 22446 The group addition of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  T  =  ( G toNrmGrp  N )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( N  e.  V  ->  .+  =  ( +g  `  T ) )
 
Theoremtng0 22447 The group identity of a structure augmented with a norm. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  T  =  ( G toNrmGrp  N )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( N  e.  V  ->  .0.  =  ( 0g
 `  T ) )
 
Theoremtngmulr 22448 The ring multiplication of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  T  =  ( G toNrmGrp  N )   &    |-  .x.  =  ( .r `  G )   =>    |-  ( N  e.  V  ->  .x.  =  ( .r `  T ) )
 
Theoremtngsca 22449 The scalar ring of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  T  =  ( G toNrmGrp  N )   &    |-  F  =  (Scalar `  G )   =>    |-  ( N  e.  V  ->  F  =  (Scalar `  T ) )
 
Theoremtngvsca 22450 The scalar multiplication of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  T  =  ( G toNrmGrp  N )   &    |-  .x.  =  ( .s `  G )   =>    |-  ( N  e.  V  ->  .x.  =  ( .s `  T ) )
 
Theoremtngip 22451 The inner product operation of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  T  =  ( G toNrmGrp  N )   &    |-  .,  =  ( .i `  G )   =>    |-  ( N  e.  V  ->  .,  =  ( .i `  T ) )
 
Theoremtngds 22452 The metric function of a structure augmented with a norm. (Contributed by Mario Carneiro, 3-Oct-2015.)
 |-  T  =  ( G toNrmGrp  N )   &    |-  .-  =  ( -g `  G )   =>    |-  ( N  e.  V  ->  ( N  o.  .-  )  =  ( dist `  T ) )
 
Theoremtngtset 22453 The topology generated by a normed structure. (Contributed by Mario Carneiro, 3-Oct-2015.)
 |-  T  =  ( G toNrmGrp  N )   &    |-  D  =  (
 dist `  T )   &    |-  J  =  ( MetOpen `  D )   =>    |-  (
 ( G  e.  V  /\  N  e.  W ) 
 ->  J  =  (TopSet `  T ) )
 
Theoremtngtopn 22454 The topology generated by a normed structure. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  T  =  ( G toNrmGrp  N )   &    |-  D  =  (
 dist `  T )   &    |-  J  =  ( MetOpen `  D )   =>    |-  (
 ( G  e.  V  /\  N  e.  W ) 
 ->  J  =  ( TopOpen `  T ) )
 
Theoremtngnm 22455 The topology generated by a normed structure. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  T  =  ( G toNrmGrp  N )   &    |-  X  =  (
 Base `  G )   &    |-  A  e.  _V   =>    |-  ( ( G  e.  Grp  /\  N : X --> A ) 
 ->  N  =  ( norm `  T ) )
 
Theoremtngngp2 22456 A norm turns a group into a normed group iff the generated metric is in fact a metric. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  T  =  ( G toNrmGrp  N )   &    |-  X  =  (
 Base `  G )   &    |-  D  =  ( dist `  T )   =>    |-  ( N : X --> RR  ->  ( T  e. NrmGrp  <->  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) ) )
 
Theoremtngngpd 22457* Derive the axioms for a normed group from the axioms for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  T  =  ( G toNrmGrp  N )   &    |-  X  =  (
 Base `  G )   &    |-  .-  =  ( -g `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  N : X --> RR )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  ( ( N `  x )  =  0  <->  x  =  .0.  ) )   &    |-  ( ( ph  /\  ( x  e.  X  /\  y  e.  X )
 )  ->  ( N `  ( x  .-  y
 ) )  <_  (
 ( N `  x )  +  ( N `  y ) ) )   =>    |-  ( ph  ->  T  e. NrmGrp )
 
Theoremtngngp 22458* Derive the axioms for a normed group from the axioms for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  T  =  ( G toNrmGrp  N )   &    |-  X  =  (
 Base `  G )   &    |-  .-  =  ( -g `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( N : X --> RR  ->  ( T  e. NrmGrp  <->  ( G  e.  Grp  /\  A. x  e.  X  (
 ( ( N `  x )  =  0  <->  x  =  .0.  )  /\  A. y  e.  X  ( N `  ( x 
 .-  y ) ) 
 <_  ( ( N `  x )  +  ( N `  y ) ) ) ) ) )
 
Theoremtnggrpr 22459 If a structure equipped with a norm is a normed group, the structure itself must be a group. (Contributed by AV, 15-Oct-2021.)
 |-  T  =  ( G toNrmGrp  N )   =>    |-  ( ( N  e.  V  /\  T  e. NrmGrp )  ->  G  e.  Grp )
 
Theoremtngngp3 22460* Alternate definition of a normed group (i.e. a group equipped with a norm) without using the properties of a metric space. This corresponds to the definition in N. H. Bingham, A. J. Ostaszewski: "Normed versus topological groups: dichotomy and duality", 2010, Dissertationes Mathematicae 472, pp. 1-138 and E. Deza, M.M. Deza: "Dictionary of Distances", Elsevier, 2006. (Contributed by AV, 16-Oct-2021.)
 |-  T  =  ( G toNrmGrp  N )   &    |-  X  =  (
 Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |- 
 .+  =  ( +g  `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( N : X --> RR  ->  ( T  e. NrmGrp  <->  ( G  e.  Grp  /\  A. x  e.  X  (
 ( ( N `  x )  =  0  <->  x  =  .0.  )  /\  ( N `  ( I `
  x ) )  =  ( N `  x )  /\  A. y  e.  X  ( N `  ( x  .+  y ) )  <_  ( ( N `  x )  +  ( N `  y ) ) ) ) ) )
 
Theoremnrmtngdist 22461 The augmentation of a normed group by its own norm has the same distance function as the normed group (restricted to the base set). (Contributed by AV, 15-Oct-2021.)
 |-  T  =  ( G toNrmGrp  ( norm `  G )
 )   &    |-  X  =  ( Base `  G )   =>    |-  ( G  e. NrmGrp  ->  (
 dist `  T )  =  ( ( dist `  G )  |`  ( X  X.  X ) ) )
 
Theoremnrmtngnrm 22462 The augmentation of a normed group by its own norm is a normed group with the same norm. (Contributed by AV, 15-Oct-2021.)
 |-  T  =  ( G toNrmGrp  ( norm `  G )
 )   =>    |-  ( G  e. NrmGrp  ->  ( T  e. NrmGrp  /\  ( norm `  T )  =  (
 norm `  G ) ) )
 
Theoremtngngpim 22463 The induced metric of a normed group is a function. (Contributed by AV, 19-Oct-2021.)
 |-  T  =  ( G toNrmGrp  N )   &    |-  N  =  (
 norm `  G )   &    |-  X  =  ( Base `  G )   &    |-  D  =  ( dist `  T )   =>    |-  ( G  e. NrmGrp  ->  D :
 ( X  X.  X )
 --> RR )
 
Theoremisnrg 22464 A normed ring is a ring with a norm that makes it into a normed group, and such that the norm is an absolute value on the ring. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  N  =  ( norm `  R )   &    |-  A  =  (AbsVal `  R )   =>    |-  ( R  e. NrmRing  <->  ( R  e. NrmGrp  /\  N  e.  A ) )
 
Theoremnrgabv 22465 The norm of a normed ring is an absolute value. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  N  =  ( norm `  R )   &    |-  A  =  (AbsVal `  R )   =>    |-  ( R  e. NrmRing  ->  N  e.  A )
 
Theoremnrgngp 22466 A normed ring is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  ( R  e. NrmRing  ->  R  e. NrmGrp )
 
Theoremnrgring 22467 A normed ring is a ring. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  ( R  e. NrmRing  ->  R  e.  Ring )
 
Theoremnmmul 22468 The norm of a product in a normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
 |-  X  =  ( Base `  R )   &    |-  N  =  (
 norm `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. NrmRing  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A  .x.  B ) )  =  ( ( N `
  A )  x.  ( N `  B ) ) )
 
Theoremnrgdsdi 22469 Distribute a distance calculation. (Contributed by Mario Carneiro, 5-Oct-2015.)
 |-  X  =  ( Base `  R )   &    |-  N  =  (
 norm `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  D  =  ( dist `  R )   =>    |-  ( ( R  e. NrmRing  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
 )  ->  ( ( N `  A )  x.  ( B D C ) )  =  (
 ( A  .x.  B ) D ( A  .x.  C ) ) )
 
Theoremnrgdsdir 22470 Distribute a distance calculation. (Contributed by Mario Carneiro, 5-Oct-2015.)
 |-  X  =  ( Base `  R )   &    |-  N  =  (
 norm `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  D  =  ( dist `  R )   =>    |-  ( ( R  e. NrmRing  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
 )  ->  ( ( A D B )  x.  ( N `  C ) )  =  (
 ( A  .x.  C ) D ( B  .x.  C ) ) )
 
Theoremnm1 22471 The norm of one in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
 |-  N  =  ( norm `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( ( R  e. NrmRing  /\  R  e. NzRing )  ->  ( N `  .1.  )  =  1 )
 
Theoremunitnmn0 22472 The norm of a unit is nonzero in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
 |-  N  =  ( norm `  R )   &    |-  U  =  (Unit `  R )   =>    |-  ( ( R  e. NrmRing  /\  R  e. NzRing  /\  A  e.  U )  ->  ( N `
  A )  =/=  0 )
 
Theoremnminvr 22473 The norm of an inverse in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
 |-  N  =  ( norm `  R )   &    |-  U  =  (Unit `  R )   &    |-  I  =  (
 invr `  R )   =>    |-  ( ( R  e. NrmRing  /\  R  e. NzRing  /\  A  e.  U )  ->  ( N `  ( I `  A ) )  =  ( 1  /  ( N `  A ) ) )
 
Theoremnmdvr 22474 The norm of a division in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
 |-  X  =  ( Base `  R )   &    |-  N  =  (
 norm `  R )   &    |-  U  =  (Unit `  R )   &    |-  ./  =  (/r `  R )   =>    |-  ( ( ( R  e. NrmRing  /\  R  e. NzRing )  /\  ( A  e.  X  /\  B  e.  U ) )  ->  ( N `  ( A  ./  B ) )  =  (
 ( N `  A )  /  ( N `  B ) ) )
 
Theoremnrgdomn 22475 A nonzero normed ring is a domain. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  ( R  e. NrmRing  ->  ( R  e. Domn  <->  R  e. NzRing ) )
 
Theoremnrgtgp 22476 A normed ring is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.)
 |-  ( R  e. NrmRing  ->  R  e.  TopGrp )
 
Theoremsubrgnrg 22477 A normed ring restricted to a subring is a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  H  =  ( Gs  A )   =>    |-  ( ( G  e. NrmRing  /\  A  e.  (SubRing `  G ) )  ->  H  e. NrmRing )
 
Theoremtngnrg 22478 Given any absolute value over a ring, augmenting the ring with the absolute value produces a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  T  =  ( R toNrmGrp  F )   &    |-  A  =  (AbsVal `  R )   =>    |-  ( F  e.  A  ->  T  e. NrmRing )
 
Theoremisnlm 22479* A normed (left) module is a module which is also a normed group over a normed ring, such that the norm distributes over scalar multiplication. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  V  =  ( Base `  W )   &    |-  N  =  (
 norm `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  F  =  (Scalar `  W )   &    |-  K  =  ( Base `  F )   &    |-  A  =  (
 norm `  F )   =>    |-  ( W  e. NrmMod  <->  (
 ( W  e. NrmGrp  /\  W  e.  LMod  /\  F  e. NrmRing ) 
 /\  A. x  e.  K  A. y  e.  V  ( N `  ( x 
 .x.  y ) )  =  ( ( A `
  x )  x.  ( N `  y
 ) ) ) )
 
Theoremnmvs 22480 Defining property of a normed module. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  V  =  ( Base `  W )   &    |-  N  =  (
 norm `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  F  =  (Scalar `  W )   &    |-  K  =  ( Base `  F )   &    |-  A  =  (
 norm `  F )   =>    |-  ( ( W  e. NrmMod  /\  X  e.  K  /\  Y  e.  V ) 
 ->  ( N `  ( X  .x.  Y ) )  =  ( ( A `
  X )  x.  ( N `  Y ) ) )
 
Theoremnlmngp 22481 A normed module is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  ( W  e. NrmMod  ->  W  e. NrmGrp )
 
Theoremnlmlmod 22482 A normed module is a left module. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  ( W  e. NrmMod  ->  W  e.  LMod )
 
Theoremnlmnrg 22483 The scalar component of a left module is a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  F  =  (Scalar `  W )   =>    |-  ( W  e. NrmMod  ->  F  e. NrmRing )
 
Theoremnlmngp2 22484 The scalar component of a left module is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  F  =  (Scalar `  W )   =>    |-  ( W  e. NrmMod  ->  F  e. NrmGrp )
 
Theoremnlmdsdi 22485 Distribute a distance calculation. (Contributed by Mario Carneiro, 6-Oct-2015.)
 |-  V  =  ( Base `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  F  =  (Scalar `  W )   &    |-  K  =  ( Base `  F )   &    |-  D  =  ( dist `  W )   &    |-  A  =  ( norm `  F )   =>    |-  (
 ( W  e. NrmMod  /\  ( X  e.  K  /\  Y  e.  V  /\  Z  e.  V )
 )  ->  ( ( A `  X )  x.  ( Y D Z ) )  =  (
 ( X  .x.  Y ) D ( X  .x.  Z ) ) )
 
Theoremnlmdsdir 22486 Distribute a distance calculation. (Contributed by Mario Carneiro, 6-Oct-2015.)
 |-  V  =  ( Base `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  F  =  (Scalar `  W )   &    |-  K  =  ( Base `  F )   &    |-  D  =  ( dist `  W )   &    |-  N  =  ( norm `  W )   &    |-  E  =  ( dist `  F )   =>    |-  (
 ( W  e. NrmMod  /\  ( X  e.  K  /\  Y  e.  K  /\  Z  e.  V )
 )  ->  ( ( X E Y )  x.  ( N `  Z ) )  =  (
 ( X  .x.  Z ) D ( Y  .x.  Z ) ) )
 
Theoremnlmmul0or 22487 If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 6-Dec-2007.) (Revised by Mario Carneiro, 4-Oct-2015.)
 |-  V  =  ( Base `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  .0.  =  ( 0g `  W )   &    |-  F  =  (Scalar `  W )   &    |-  K  =  ( Base `  F )   &    |-  O  =  ( 0g `  F )   =>    |-  ( ( W  e. NrmMod  /\  A  e.  K  /\  B  e.  V )  ->  ( ( A  .x.  B )  =  .0.  <->  ( A  =  O  \/  B  =  .0.  ) ) )
 
Theoremsranlm 22488 The subring algebra over a normed ring is a normed left module. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  A  =  ( (subringAlg  `  W ) `  S )   =>    |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W ) )  ->  A  e. NrmMod )
 
Theoremnlmvscnlem2 22489 Lemma for nlmvscn 22491. Compare this proof with the similar elementary proof mulcn2 14326 for continuity of multiplication on  CC. (Contributed by Mario Carneiro, 5-Oct-2015.)
 |-  F  =  (Scalar `  W )   &    |-  V  =  ( Base `  W )   &    |-  K  =  (
 Base `  F )   &    |-  D  =  ( dist `  W )   &    |-  E  =  ( dist `  F )   &    |-  N  =  ( norm `  W )   &    |-  A  =  ( norm `  F )   &    |-  .x.  =  ( .s `  W )   &    |-  T  =  ( ( R  /  2 )  /  ( ( A `  B )  +  1
 ) )   &    |-  U  =  ( ( R  /  2
 )  /  ( ( N `  X )  +  T ) )   &    |-  ( ph  ->  W  e. NrmMod )   &    |-  ( ph  ->  R  e.  RR+ )   &    |-  ( ph  ->  B  e.  K )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  C  e.  K )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  ( B E C )  <  U )   &    |-  ( ph  ->  ( X D Y )  <  T )   =>    |-  ( ph  ->  ( ( B  .x.  X ) D ( C  .x.  Y ) )  <  R )
 
Theoremnlmvscnlem1 22490* Lemma for nlmvscn 22491. (Contributed by Mario Carneiro, 5-Oct-2015.)
 |-  F  =  (Scalar `  W )   &    |-  V  =  ( Base `  W )   &    |-  K  =  (
 Base `  F )   &    |-  D  =  ( dist `  W )   &    |-  E  =  ( dist `  F )   &    |-  N  =  ( norm `  W )   &    |-  A  =  ( norm `  F )   &    |-  .x.  =  ( .s `  W )   &    |-  T  =  ( ( R  /  2 )  /  ( ( A `  B )  +  1
 ) )   &    |-  U  =  ( ( R  /  2
 )  /  ( ( N `  X )  +  T ) )   &    |-  ( ph  ->  W  e. NrmMod )   &    |-  ( ph  ->  R  e.  RR+ )   &    |-  ( ph  ->  B  e.  K )   &    |-  ( ph  ->  X  e.  V )   =>    |-  ( ph  ->  E. r  e.  RR+  A. x  e.  K  A. y  e.  V  ( ( ( B E x )  <  r  /\  ( X D y )  < 
 r )  ->  (
 ( B  .x.  X ) D ( x  .x.  y ) )  <  R ) )
 
Theoremnlmvscn 22491 The scalar multiplication of a normed module is continuous. Lemma for nrgtrg 22494 and nlmtlm 22498. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  F  =  (Scalar `  W )   &    |- 
 .x.  =  ( .sf `  W )   &    |-  J  =  ( TopOpen `  W )   &    |-  K  =  ( TopOpen `  F )   =>    |-  ( W  e. NrmMod  ->  .x.  e.  ( ( K  tX  J )  Cn  J ) )
 
Theoremrlmnlm 22492 The ring module over a normed ring is a normed module. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  ( R  e. NrmRing  ->  (ringLMod `  R )  e. NrmMod )
 
Theoremrlmnm 22493 The norm function in the ring module. (Contributed by AV, 9-Oct-2021.)
 |-  ( norm `  R )  =  ( norm `  (ringLMod `  R ) )
 
Theoremnrgtrg 22494 A normed ring is a topological ring. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  ( R  e. NrmRing  ->  R  e. 
 TopRing )
 
Theoremnrginvrcnlem 22495* Lemma for nrginvrcn 22496. Compare this proof with reccn2 14327, the elementary proof of continuity of division. (Contributed by Mario Carneiro, 6-Oct-2015.)
 |-  X  =  ( Base `  R )   &    |-  U  =  (Unit `  R )   &    |-  I  =  (
 invr `  R )   &    |-  N  =  ( norm `  R )   &    |-  D  =  ( dist `  R )   &    |-  ( ph  ->  R  e. NrmRing )   &    |-  ( ph  ->  R  e. NzRing )   &    |-  ( ph  ->  A  e.  U )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  T  =  ( if ( 1  <_  ( ( N `  A )  x.  B ) ,  1 ,  ( ( N `  A )  x.  B ) )  x.  (
 ( N `  A )  /  2 ) )   =>    |-  ( ph  ->  E. x  e.  RR+  A. y  e.  U  ( ( A D y )  <  x  ->  ( ( I `  A ) D ( I `  y ) )  <  B ) )
 
Theoremnrginvrcn 22496 The ring inverse function is continuous in a normed ring. (Note that this is true even in rings which are not division rings.) (Contributed by Mario Carneiro, 6-Oct-2015.)
 |-  X  =  ( Base `  R )   &    |-  U  =  (Unit `  R )   &    |-  I  =  (
 invr `  R )   &    |-  J  =  ( TopOpen `  R )   =>    |-  ( R  e. NrmRing  ->  I  e.  ( ( Jt  U )  Cn  ( Jt  U ) ) )
 
Theoremnrgtdrg 22497 A normed division ring is a topological division ring. (Contributed by Mario Carneiro, 6-Oct-2015.)
 |-  ( ( R  e. NrmRing  /\  R  e.  DivRing )  ->  R  e. TopDRing )
 
Theoremnlmtlm 22498 A normed module is a topological module. (Contributed by Mario Carneiro, 6-Oct-2015.)
 |-  ( W  e. NrmMod  ->  W  e. TopMod )
 
Theoremisnvc 22499 A normed vector space is just a normed module which is algebraically a vector space. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  ( W  e. NrmVec  <->  ( W  e. NrmMod  /\  W  e.  LVec )
 )
 
Theoremnvcnlm 22500 A normed vector space is a normed module. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  ( W  e. NrmVec  ->  W  e. NrmMod )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >